期刊文献+

Zakharov方程的多级包络周期解 被引量:2

The multi-order envelope periodic solutions for Zakharov equation
下载PDF
导出
摘要 借助数学软件Mathematica,利用基于Lamé方程和Jacobi椭圆函数展开法的小扰动方法求得了Zakharov方程的多级包络周期解,极限情况下它们退化为各种形式的包络孤波解. With the aid of computer algebraic system ——Mathematica, the multi-order envelope periodic solutions of Zakharov equation are obtained by using the perturbed method, which are based on Lamé equation and Jacobi elliptic function expansion method. These multi-order envelope periodic solutions can degenerate into different envelope solitary wave solutions.
出处 《西北师范大学学报(自然科学版)》 CAS 2006年第4期38-43,共6页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(1024700810575082) 西北师范大学科技创新工程资助项目(NWNU-KJCXGC-215)
关键词 ZAKHAROV方程 多级包络周期解 孤波解 Zakharov equation multi-order envelope periodic solution solitary wave solution
  • 相关文献

参考文献13

二级参考文献70

  • 1[3]Wang Z X,Guo D R 1989 Special Functions(Singapore: World Scientific)
  • 2[8]Liu S K,Fu Z T,Liu S D et al 2000 Phys.Lett.A 269 319
  • 3[10]Nayfeh A H 1973 Perturbation Methods(New York: John Wiley and Sons Inc.)
  • 4[11]Wang M L 1995 Phys.Lett.A 199 169
  • 5[14]Fan E G 2000 Phys.Lett.A 277 21
  • 6[15]Hirota R 1973 J.Math.Phys.14 810
  • 7[16]Kudryashov N A 1990 Phys.Lett.A 147 287
  • 8[17]Otwinowski M,Paul R,Laidlaw W G 1988 Phys.Lett.A 128 483
  • 9[18]Liu S K,Fu Z T,Liu S D et al 2001 Appl.Math.Mech.22 326
  • 10[19]Yan C 1996 Phys.Lett.A 224 77

共引文献111

同被引文献17

  • 1黄定江,张鸿庆.扩展的双曲函数法和Zakharov方程组的新精确孤立波解[J].物理学报,2004,53(8):2434-2438. 被引量:38
  • 2杜先云,刘希强.Zakharov方程的一些精确解[J].四川师范大学学报(自然科学版),2006,29(4):429-433. 被引量:4
  • 3Wang M L. Solitary wave solution for varian boussinesq equations [J]. Phys. Lett. A, 1995(199) : 169 -172.
  • 4Zhou Y B, Wang M L, Wang Y M. The periodic wave solution and solitary wave solutions for a class of nonlinear partial differential equations[ J]. Phys. Lett . A, 2004(323) : 77 - 88.
  • 5吴国将,张苗,史良马,张文亮,韩家骅.扩展的Jacobi椭圆函数展开法和Zakharov方程组的新的精确周期解[J].物理学报,2007,56(9):5054-5059. 被引量:11
  • 6Warwaz A M. Analytic study on nonlinear variant of the RLW and the PHI-four equations[J].Communications in Nonlinear Science and Numerical Simulation,2007.314-327.
  • 7Wang M L. Solitary wave solution for variant Boussinesq equations[J].Physics Letters A,1995.169-172.
  • 8Wazwaz Abdul-Majid. Exact and explicit traveling wave solutions for the nonlinear Drinfeld-Sokolov system[J].Communications in Nonlinear Science and Numerical Simulation,2006.311-325.
  • 9Sirendaoreji,Sun J. Auxiliary equation method for solving nonlinear Partial differential equation[J].Physics Letters A,2003.387-396.
  • 10HE J H,WU X Z. Exp-function method for nonlinear wave equations[J].Chaos,Solitons and Fractals,2006.700-708.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部