摘要
The Dy^3+ -doped Fe3O4 samples were synthesized by sol-gel method, and the effects of dopant on the electrical and magnetic properties were investigated. According to XRD analysis, the high concentration doping of dysprosium ions in Fe3O4 can not be obtained due to the difference of ionic radius, and Fe^3 + ions are replaced by only a small amount of dysprosium ions. The magnetic property was characterized by VSM. The substitution results in the change of saturation magnetization, which may be due to the complex effects of increasing magnetization resulted from Dy^3+ substitution and decreasing magnetization resulted from the impurity. The electrical property was characterized by four-probe method. With the increasing eoped content, magnetoresistance also increases, then decreases, and increases again. The spin-polarization of doped samples is lower than that of Fe3O4. Lower spin-polarization results in lower tunneling magnetoresistance. Fortunately, barrier was obtained by the second phase at the same time when sample was synthesized. The increase of appropriate barrier height leads to the change of tunneling magnetoresistance.
The Dy^3+ -doped Fe3O4 samples were synthesized by sol-gel method, and the effects of dopant on the electrical and magnetic properties were investigated. According to XRD analysis, the high concentration doping of dysprosium ions in Fe3O4 can not be obtained due to the difference of ionic radius, and Fe^3 + ions are replaced by only a small amount of dysprosium ions. The magnetic property was characterized by VSM. The substitution results in the change of saturation magnetization, which may be due to the complex effects of increasing magnetization resulted from Dy^3+ substitution and decreasing magnetization resulted from the impurity. The electrical property was characterized by four-probe method. With the increasing eoped content, magnetoresistance also increases, then decreases, and increases again. The spin-polarization of doped samples is lower than that of Fe3O4. Lower spin-polarization results in lower tunneling magnetoresistance. Fortunately, barrier was obtained by the second phase at the same time when sample was synthesized. The increase of appropriate barrier height leads to the change of tunneling magnetoresistance.