期刊文献+

Positive integers possessing a weak order

Positive integers possessing a weak order
下载PDF
导出
摘要 Let m be a positive integer, g(m) be the number of integers t for which 1 ≤ t ≤ m and there does not exist a positive integer n satisfying ( t = t(n) ) t^n+1≡t(modm).For a number x≥3, let G(x)=∑m≤tg(m) In this paper, we obtain the asymptotic formula: .G(x)=αx^2+O(xlogx),ax x→∞ Our result improves the corresponding result with an error term O(xlog^2 x) of Yang Zhaohua obtained in 1986 Let m be a positive integer, g(m) be the number of integers t for which 1≤t≤m and there does not exist a positive integer n satisfying (t=t(n))t~ n+1 ≡t(modm).For a number x≥3, letG(x)=∑m≤xg(m).In this paper, we obtain the asymptotic formula:G(x)=αx^2+O(xlogx),as x→∞. Our result improves the corresponding result with an error term O(xlog^2x) of Yang Zhaohua obtained in 1986.
作者 刘弘泉
出处 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第4期502-503,共2页 哈尔滨工业大学学报(英文版)
关键词 integers possessing a weak order asymptotic formula 弱序化 整数 渐近公式 代数
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部