期刊文献+

低温固相法制备高比表面积的纳米MgO 被引量:20

Synthesis of Nanometer Magnesia with High Surface Area by Solid-State Chemical Reaction
下载PDF
导出
摘要 以草酸和乙酸镁为原料,采用低温固相化学反应合成出前体MgC2O4.2H2O,再通过焙烧得到纳米MgO.采用X射线衍射、N2物理吸附、透射电镜和热重-差热技术对前体和MgO样品进行了表征,并考察了焙烧气氛的影响.结果表明,在流动干燥的氮气中520℃焙烧4h后制得了比表面积高达412m2/g的纳米MgO;此MgO为面心立方结构,晶粒尺寸为4~5nm,粒子堆积成在一定程度上长程有序的介孔结构,并具有十分优良的抗高温烧结性能,600和800℃焙烧2h后,其比表面积仍分别高达357和153m2/g. Nanometer MgO samples with high surface area, small crystal size, and mesoporous texture were synthesized by thermal decomposition of MgC2O4· 2H2O, which was prepared by solid-state chemical reaction between H2C2O4· 2H2O and Mg(CH3COO)2 ·4H2O. The existence of steam accelerated the sintering of MgO during the decomposition process and MgO with surface area as high as 412 m^2/g was obtained through calcining the precursor in flowing dry nitrogen at 520 ℃ for 4 h. The samples were characterized by X-ray diffraction, N2 adsorption, transmission electron microscopy, thermogravimetry, and differential thermal analysis. The as-prepared MgO was composed of nanocrystals with a size of 4-5 nm and formed a wormhole-like porous structure. In addition, the MgO had good thermal stability, and its surface area was still 357 and 153 m^2/g after calcination at 600 and 800 ℃ for 2 h, respectively. Compared with the MgO sample prepared by the precipitation method, MgO prepared by the solid-state chemical reaction has similar pore size distribution, surface area, and crystal size. The solid-state chemical method has the advantages of low cost, low pollution, and high yield; therefore it appears to be a promising method for the manufacture of nanometer MgO in industry.
出处 《催化学报》 SCIE CAS CSCD 北大核心 2006年第9期793-798,共6页
基金 国家重点基础研究发展项目(G2000077503) 国家自然科学基金(20273003)资助项目.
关键词 纳米氧化镁 草酸 乙酸镁 固相反应 高比表面积 nanometer magnesia oxalic acid magnesium acetate solid-state chemical reaction high surface area
  • 引文网络
  • 相关文献

参考文献13

  • 1Bhargava A,Alarco J A,Mackinnon I D R,Page D,Ilyushechkin A.Mater Lett,1998,34(3-6):133
  • 2Yang P D,Lieber C M.Science,1996,273(5283):1836
  • 3Diwald O,Knozinger E.Jphys Chem B,2002,106(13):3495
  • 4Murphy D M,Farley R D,Purnell I J,Rowlands C C,Yacob A R,Paganini M C,Giamello E.J Phys Chem B,1999,103(11):1944
  • 5Richards R,Li W F,Decker S,Davidson C,Koper O,Zaikovski V,Volodin A,Rieker T,Klabunde K J.J Am Chem Soc,2000,122(20):4921
  • 6Khaleel A,Kapoor P N,Klabunde K J.Nanostruct Mater,1999,11(4):459
  • 7Matsumoto T,Kato A.Ceram Int,1990,16(6):325
  • 8Alvarado E,Torres-Martinez L M,Fuentes A F,Quintana P.Polyhedron,2000,19(22-23):2345
  • 9Mel'gunov M S,Fenelonov V B,Mel'gunova E A,Bedilo A F,Klabunde K.J Phys Chem,2003,107(11):2427
  • 10唐新村,黄伯云,贺跃辉.低热固相反应冷融熔机理和冷溶熔机理的证据[J].无机化学学报,2005,21(1):12-14. 被引量:3

二级参考文献49

  • 1唐振红 郑红梅 等.-[J].无机材料学报,1997,12:505-505.
  • 2俞建群 贾殿赠 等.-[J].化学通报,1998,2:35-35.
  • 3赵新宇 郑柏存 等.-[J].无机材料学报,1996,11:611-611.
  • 4俞建群 贾殿赠 等.-[J].分子科学学报:中英文版,1998,14(2):126-127.
  • 5俞建群,分子科学学报,1998年,14卷,126页
  • 6唐振红,无机材料学报,1997年,12卷,505页
  • 7赵新宇,无机材料学报,1996年,11卷,611页
  • 8Hao Z P,Chin Chem Lett,1995年,6卷,345页
  • 9王子忱,高等学校化学学报,1992年,13卷,1287页
  • 10黄德如(译),无机和配位化合物的红外和拉曼光谱,1986年,239页

共引文献77

同被引文献209

引证文献20

二级引证文献99

;
使用帮助 返回顶部