摘要
The new designed high-velocity arc spray gun with three different nozzles is developed to match the DZ400 arc spray system, which can produce the coatings with the structure of superfine and low porosity. This system can be used to spray three normal wires such as 4Cr13, FeCrAl and 7Cr13 (flux cored wires). Using the scanning electron microscope ( SEM ) to analyze shape and particles size that sprayed by the nozzles with different parameters, as well as with the S-3500N SEM and the energy spectrum analytic (ESA) instrument to identify the content of the oxides, porosity and thickness of the coatings, we get the result that the porosity in the coatings of solid wire is less than 3%, of the flux-cored wires is less than 5%, and the distribution of the coatings sprayed by the nozzle with secondary supplementary airflow is typically shown in the form of highdensity lameUarsplat structure and the average lamellar thickness is around 5μm.
The new designed high-velocity arc spray gun with three different nozzles is developed to match the DZ400 arc spray system, which can produce the coatings with the structure of superfine and low porosity. This system can be used to spray three normal wires such as 4Cr13, FeCrAl and 7Cr13 (flux cored wires). Using the scanning electron microscope ( SEM ) to analyze shape and particles size that sprayed by the nozzles with different parameters, as well as with the S-3500N SEM and the energy spectrum analytic (ESA) instrument to identify the content of the oxides, porosity and thickness of the coatings, we get the result that the porosity in the coatings of solid wire is less than 3%, of the flux-cored wires is less than 5%, and the distribution of the coatings sprayed by the nozzle with secondary supplementary airflow is typically shown in the form of highdensity lameUarsplat structure and the average lamellar thickness is around 5μm.