摘要
In this paper the mixing of a sample in the curved microchannel with heterogeneous surface potentials is analysed numerically by using the control-volume-based finite difference method. The rigorous models for describing the wall potential and external potential are solved to get the distribution of wall potential and external potential, then momentum equation is solved to get the fully developed flow field. Finally the mass transport equation is solved to get the concentration field. The results show that the curved microchannel has an optimized capability of sample mixing and transport when the heterogeneous surface is located at the left conjunction between the curved part and straight part. The variation of heterogeneous surface potential ψn has more influence on the capability of sample mixing than on that of sample transport. The ratio of the curved microchanners radius to width has a comparable effect on the capability of sample mixing and transport. The conclusions above are helpful to the optimization of the design of microfluidic devices for the improvement of the efficiency of sample mixing.
In this paper the mixing of a sample in the curved microchannel with heterogeneous surface potentials is analysed numerically by using the control-volume-based finite difference method. The rigorous models for describing the wall potential and external potential are solved to get the distribution of wall potential and external potential, then momentum equation is solved to get the fully developed flow field. Finally the mass transport equation is solved to get the concentration field. The results show that the curved microchannel has an optimized capability of sample mixing and transport when the heterogeneous surface is located at the left conjunction between the curved part and straight part. The variation of heterogeneous surface potential ψn has more influence on the capability of sample mixing than on that of sample transport. The ratio of the curved microchanners radius to width has a comparable effect on the capability of sample mixing and transport. The conclusions above are helpful to the optimization of the design of microfluidic devices for the improvement of the efficiency of sample mixing.
基金
Project supported by the National Natural Science Foundation (Grant No 10372090) and the Doctoral Program of Higher Education of China (Grant No 20030335001).