期刊文献+

最小二乘法求解三类卫星重力梯度边值问题的研究 被引量:4

Solving Three Types of Satellite Gravity Gradient Boundary Value Problems by Least-square
下载PDF
导出
摘要 研究了最小二乘法求解3类卫星重力梯度边值问题的理论和方法,给出了3类梯度观测值{Γzz}、{Γxz、Γyz}和{Γxx-Γyy,2Γxy}对应边值问题解的核函数严密表达式。模拟试算结果表明,最小二乘法求解的卫星重力梯度积分公式用于恢复地球重力场是有效而严密的。 The principle and method of solving three types of satellite gravity gradient boundary value problems by least-square are discussed in detail. And the kernel function expressions of least square solution of three geodetic boundary value problems with the observations are presented. From the results of recovery of gravity field using simulated gradient tensor data, a conclusion can be drawn that the satellite gravity gradient integral formula gotten from least square, used for recovering the gravity field, is valid and rigorous.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2006年第11期987-990,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(40274004)
关键词 最小二乘法 GBVP 核函数 卫星重力梯度 least square GBVP kernel function satellite gravity gradient
  • 相关文献

参考文献6

  • 1ESA. Gravity Field and Steady-State Ocean Circulation Mission[C].C/O ESTEC, Noordwijk,1999
  • 2Rummel R. Uniquely and Overdetermined Geodetic Boundary Value Problems by Least Squares [J].Bulletin Geodesique,1989(63) : 1-33
  • 3Rummel R, Gelderen M van. Spectral Analysis of the Full Gravity Tensor[J]. Geophys J Int, 1992(111):159-169
  • 4Gelderen M van, Rummel R. The Solution of the General Geodetic Boundary Value Problem [J].Journal of Geodesy, 2001 ( 75 ) : 1-11
  • 5Li J. Integral Formulas for Computing the Disturbing Potential, Gravity Anomaly and the Deflection of the Vertical from the Second-order Radial Gradient of the Disturbing Potential[J].Journal of Geodesy, 2005,79(1-3) :64-70
  • 6莫里茨.高等物理大地测量学[M].北京:测绘出版社,1984

同被引文献22

  • 1桂任舟,杨子杰.基于信号分解的时频分析方法在高频地波雷达目标监测中的应用研究[J].武汉大学学报(信息科学版),2006,31(7):653-656. 被引量:7
  • 2徐新禹,李建成,邹贤才,范春波,禇永海.GOCE卫星重力探测任务[J].大地测量与地球动力学,2006,26(4):49-55. 被引量:8
  • 3Sunkel H . From Eotvos to mGal+Final Report [R]. ESA/ESTEC Contract No. 14287/00/NL/ DC, TU Graz, Austria, 2002.
  • 4European Space Agency. Gravity Field and Steady- state Ocean Circulation Mission[R]. ESA SP-1233 (1), ESA Publication Division, C/O ESTEC, Noordwiik, The Netherlands, 1999.
  • 5Koop R. Global Gravity Field Modeling Using Sat ellite Gravity Gradiometry[R]. Publications on Ge odesy, Delft, the Netherlands, 1993.
  • 6Colombo O L. Numerical Methods for Harmonic Analysis on the Sphere[R]. Rep. No. 310, Dept. of Geodetic. Science, Ohio State Univ. , Columbus, 1981.
  • 7Sneeuw N, van Gelderen M. The Polar Gaps[M]// Sanso F, Rummel R. Lecture Notes in Earth Sciences, Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Berlin: Springer Verlag, 2003.
  • 8Koop R. Global Gravity Field Modeling Using Satellite Gravity Gradiometry[R]. Publications on Ge.odesy, no. 38, Netherland Geodetic Commission, Delft, 1993.
  • 9Petrovskaya M S, Vershkov A N. Non-singular Expressions for the Gravity Gradients in the Local North-oriented and Orbital Reference Frames[J]. J Geod, 2006, 80:117-127.
  • 10Eshagh M. On Satellite Gravity Gradiometry[D]. Stockholm, Sweden: Royal Institute of Technology (KTH), 2009.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部