摘要
研究地月低能转移轨道的设计方法。这种低能转移轨道利用了弱稳定边界理论,通过太阳的引力摄动,使得探测器能够不经过减速就被月球俘获。与经典的霍曼转移相比,低能转移轨道可节省约140m/s的速度脉冲。由于设计是基于四体问题模型进行的,问题具有很强的非线性特性,寻找满足约束条件的转移轨道变得非常困难,常用的两点边值问题的解法在这里都失效。本文在研究地月低能转移轨道特性的基础上,对一般地月转移轨道搜索的变步长爬山法进行改进,用来设计地月低能转移轨道。仿真结果验证了该方法的有效性。
This paper studies a new type of low energy trajectory from the Earth to the Moon. The trajectory is accomplished via the weak stable boundary theory. Using the solar perturbation force, the probe flying on low energy transfer trajectory can be captured by the moon without deceleration maneuver. Comparing with classical Hohmann transfer method, the method can save velocity pulse of ldOm/s. The research is based on the four body problem model (4BP). Because of nonlinear character of the problem, it is very difficult to find the proper transfer trajectory satisfying original restricted condition. The character of the low energy transfer trajectory is analyzed, and then an improved variation step mountain climbing method is used to search the trajectory. Simulating results validate the effectiveness of the proposed method.
出处
《宇航学报》
EI
CAS
CSCD
北大核心
2006年第5期965-969,共5页
Journal of Astronautics
基金
国家自然科学基金(60535010)
关键词
转移轨道
轨道设计
四体问题
优化方法
Transfer trajectory
Trajectory design
Four body problem
Optimization method