期刊文献+

基于QPSO的数据聚类 被引量:14

Data Clustering Based on Quantum-behaved Particle Swarm Optimization
下载PDF
导出
摘要 在K-Means聚类、PSO聚类、K-Means和PSO混合聚类(KPSO)的基础上,研究了基于量子行为的微粒群优化算法(QPSO)的数据聚类方法,并提出利用K-Means聚类的结果重新初始化粒子群,结合QPSO的聚类算法,即KQPSO。介绍了如何利用上述算法找到用户指定的聚类个数的聚类中心。聚类过程都是根据数据之间的Euclidean(欧几里得)距离。K-Means算法、PSO算法和QPSO算法的不同在于聚类中心向量的“进化”上。最后使用三个数据集比较了上面提到的五种聚类方法的性能,结果显示基于QPSO算法的数据聚类性能比一般PSO算法更好。 This paper investigates Quantum-behaved Particle Swarm Optimization (QPSO) algorithm to cluster data based on the K-Means clustering, PSO clustering and KPSO clustering. After that we introduce using K-Means clustering to seed the initial swarm, combing with QPSO to cluster data, namely KQPSO and introduce how these algorithms can be used to find the centroids of a user specified number of clusters. All the process of clustering based on the Euclidean distance among data vectors. The differences between K-Means, PSO, QPSO is the evolution of the cluster-centroids. Finally, we compare the performance of the five clustering method on three data sets. The experiments result show QPSO clustering superiority.
出处 《计算机应用研究》 CSCD 北大核心 2006年第12期40-42,45,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60474030)
关键词 聚类 K—Means PSO QPSO 聚类中心 Clustering K-Means PSO QPSO( Quantum-behaved Particle Swarm Optimization) Cluster-centroids
  • 相关文献

参考文献9

  • 1Sun J,Xu W B.A Global Search Strategy of Quantum-behaved Particle Swarm Optimization[C].Proceedings of IEEE Conference on Cybernetics and Intelligent Systems,2004.111-116.
  • 2Sun J,Feng B,Xu W B.Particle Swarm Optimization with Particles Having Quantum Behavior[C].Proceedings of 2004 Congress on Evolutionary Computation,2004.325-331.
  • 3D W van der Merwe,A P Engelbrecht.Data Clustering Using Particle Swarm Optimization[J/OL].http://cirg.cs.up.ac.za/publications/CEC2003d.pdf.
  • 4J Kennedy,R C Eberhart.Particle Swarm Optimization[C].Proceedings of the IEEE International Joint Conference on Neural Networks,1995.1942-1948.
  • 5J Kennedy,R C Eberhart,Y Shi.Swarm Intelligence[M].Morgan Kaufmann,2002.
  • 6T Kohonen.Self-Organizing Maps[M].Berlin:Springer-Verlag,1995.
  • 7A P Engelbrecht.Sensitivity Analysis of Multilayer Neural Networks[D].Stellenbosch:Department of Computer Science,University of Stellenbosch,1999.
  • 8Angeline P J.Using Selection to Improve Particle Swarm Optimization[C].Proceedings of IEEE International Conference on Evolutionary Computation,1998.84-89.
  • 9Clerc M,Kennedy J.The Particle Swarm:Explosion,Stability and Convergence in a Multi-dimensional Complex Space[J].IEEE Transactions on Evolutionary Computation,2002,(6):58-73.

同被引文献154

引证文献14

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部