期刊文献+

A New Modeling Method Based on Genetic Neural Network for Numeral Eddy Current Sensor

A New Modeling Method Based on Genetic Neural Network for Numeral Eddy Current Sensor
下载PDF
导出
摘要 In this paper,we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem.The principle and algorithms of genetic neural network are introduced.In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data.So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network.The nonlinear model has the advantages of strong robustness,on-line scaling and high precision.The maximum nonlinearity error can be reduced to 0.037% using GNN.However,the maximum nonlinearity error is 0.075% using least square method (LMS). In this paper, we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line scaling and high precision. The maximum nonlinearity error can be reduced to 0.037% using GNN. However, the maximum nonlinearity error is 0.075% using least square method (LMS).
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期611-613,共3页 Rare Metal Materials and Engineering
关键词 MODELING eddy current sensor functional link neural network genetic algorithm genetic neural network modeling eddy current sensor functional link neural network genetic algorithm genetic neural network
  • 相关文献

参考文献10

  • 1Wei T et al. Journal of East China Shipbuilding Institute[J], 2002, 16(3): 72.
  • 2Brignell J E. Sensors and Actuators[J], 1996, A56:11.
  • 3Prtra J C et al. Signal Processing[J], 1995, 43(2): 181.
  • 4Prtra J C et al. IEEE Trans Instru Meas[J], 1994, 63(6): 874.
  • 5Betta G et al. Proc of IEEE Instrumentation Measurement Teehnol[C]. Brussels, Belgium, 1996:1129.
  • 6Park D etal. IEEE Trans on Syst[J], 1994, 24(1): 39.
  • 7Cao J et al. Journal of Forestry Research[J], 2003, 14(1): 87.
  • 8Qing L Journal of Nanjing Normal University[J], 2002, 2(3): 11.
  • 9Eiben A E et al. IEEE Trans on Evolutionary Computation[J], 1999, 3(2): 124.
  • 10Luo S. Journal of Northern Jiaotong University[J], 1995,19(4): 541.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部