期刊文献+

时间序列数据流的自适应预测 被引量:7

An Adaptive Forecasting Method for Time-Series Data Streams
下载PDF
导出
摘要 提出一种自适应预测方法AFStreams,综合了复杂人工智能预测方法和时间序列预测方法的优点,可以根据数据流值变化的快慢程度自适应地确定预测步长,在计算资源受限的前提下,形成最佳预测点轨迹.仿真实验证明,AFStreams能够良好地适应数据的变化,在计算复杂度和预测精度之间平衡,显著地提高了平均预测精度. An adaptive forecasting method that combines the merits of the precision of artificial intelligence forecasting method and the rapidness of times-series forecasting method, called AFStreams, is proposed. It can estimate the forecasting-step self adaptively from the change ratio of stream-values and can generate proved optimal track of forecasting points with the minimum computation cost from limited resources. Experiments proved that AFStreams can adapt to the changes of data well and provide tradeoff between computing complexity and forecasting precision.
出处 《自动化学报》 EI CSCD 北大核心 2007年第2期197-201,共5页 Acta Automatica Sinica
基金 江苏省研究生创新计划项目(xm04-36)资助~~
关键词 时间序列 数据流 预测 插值小波 KALMAN滤波 Time-series, data streams, forecasting, interpolating wavelet, Kalman filtering
  • 相关文献

参考文献12

  • 1Babcock B, Babu S, Datar M, Motwani R, Widom J. Models and issues in data stream systems. In: Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. Madison, Wisconsin, USA: ACM Press, 2002. 1-16
  • 2Jain A, Chang E Y, Wang Yuan-Fang. Adaptive stream resource management using Kalman filters. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. Paris, France, USA: ACM Press, 2004.11-22
  • 3Papadimitriou S, Sun Ji-Meng, Faloutsos C. Streaming pattern discovery in multiple time-series. In: Proceedings of the 31st International Conference on Very Large Data Bases.Trondheim, Norway: VLDB Endowment, 2005. 697-708
  • 4Sun Ji-Meng, Papadimitriou S, Faloutsos C. Distributed pattern discovery in multiple streams. In: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining(PAKDD). Singapore, Berlin: Springer-Verlag,LNCS, 2006. 73918:13-718
  • 5Faloutsos C. Stream and sensor data mining. In: Proceedings of the 9th International Conference on Extending Database Technology. Heraklion, Greece, Berlin: Springer-Verlag, LNCS, 2004. 25-27
  • 6Trudnowski J D, McReynolds W L, Johnson M J. Real-time very short-term load prediction for power-system automatic generation control. IEEE Transactions on Control Systems Technology, 2001, 9(2): 254-260
  • 7Liu K, Subbarayan S, Shoults R R, Manry M T, Kwan C,Lewis F I, Naccarino J. Comparison of very short-term load forecasting techniques. IEEE Transactions on Power Systems, 1996, 11(2): 877-882
  • 8贺国光,马寿峰,李宇.基于小波分解与重构的时间序列预测法[J].自动化学报,2002,28(6):1012-1014. 被引量:31
  • 9Mallat S. A Wavelet Tour of Signal Processing, Second Edition. Boston: Academic Press, 1999. 221-226
  • 10Brown R G, Hwang P Y C. Introduction to Random Signals and Applied Kalman Filtering, 2nd Edition. New York:John Wiley&Sons, 1992. 134-168

二级参考文献1

共引文献30

同被引文献105

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部