期刊文献+

基于小波变换的车轮力传感器信号的去噪研究 被引量:9

Research on De-noising of Signals of Wheel Force Transducer Based on Wavelet Transform
下载PDF
导出
摘要 在汽车道路试验中,通过多维车轮力传感器(WFT)可以测量每个轮所受的各维力和力矩。在测量过程中,信号会不可避免地受到各种噪声的干扰,而且,在将测量数据从车轮坐标系转换到车辆坐标系时,车轮转角的误差使测量结果产生了更严重的噪声。这些宽带随机噪声严重影响了车辆性能的分析。小波分析是一种信号的时间-尺度分析方法,特别适合于非平稳信号的分析,具有多分辨率分析特性,而且在时频两域都具有表征信号局部特征的能力。针对车轮力信号的特点,在MATLAB环境下编程进行车轮力信号小波变换去噪研究,试验结果表明,在选择了适当的小波基本函数和阈值的情况下,采用小波变换的阈值去噪方法对多维车轮力信号进行去噪处理,可以取得良好的效果。 Multi-dimensional forces and torques can be measured by multi-axes wheel force transdueer(WVF) in automobile mad experiment. The signals were inevitably influenced by kinds of noises, and awful noises were generated when test data were transformed from wheel coordinates to vehicle coordinates because of the measurement error of wheel rotating angle. These wide band stochastic noises badly influenced the analysis of vehicle performance. Wavelet transform is an analytical method of time-freqneney, which is especially suitable for the analysis of non-stable signal. The method has a eharaetex of multi-resolution analysis, and has ability of showing part character of signals in time-frequency domain. In view of the characteristics of wheelforce signals, de-noising methods based on wavelet transform were researched under MATLAB. The results suggest that effective outcome of wheel force signals could be got by the method of threshold value de-nuising if the suitable wavelet base and threshold value were chosen.
出处 《仪表技术与传感器》 CSCD 北大核心 2007年第1期44-46,52,共4页 Instrument Technique and Sensor
基金 江苏省交通科学研究计划项目(05C02)
关键词 多维车轮力传感器 小波变换 多分辨分析 MALLAT算法 闻值去噪 multi-axes wheel force transducer wavelet transform multi-resolution analysis MaHat algorithm threshold value de-noising
  • 相关文献

参考文献6

二级参考文献12

  • 1杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..
  • 2[1]Rupp A, Grubisic V, Nugebauer J. Development of a multi-component wheel force transducer--A tool to support vehicle design and validation[J].SAE,930258.
  • 3[2]Jodi L Sommerfeld, Richard A Meyer. Correlation and accuracy of a wheel force transducer as developed and tested on a flat-trac tire test system[J]. SAE,1999,(01):0938.
  • 4[3]Weiblen, Walter, Hofmann, et al. Evaluation of diffe-rent designs of wheel force transducers[J]. Sensors and Actuators, 98026.
  • 5程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,2003..
  • 6[日]臼井支朗.信号分析[M].北京:科学出版社,2001..
  • 7Donoho D L. De-noising by soft -thresholding [A]. IEEE Transaction on Inform Theory [C]. 1995, 11(3): 613-627.
  • 8Gabor.Theory of communication[J].JIEE,1946,93:429~441.
  • 9Mallat S.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1989,11:674 ~ 693.
  • 10Marcin S,Piotr W.Neuro-wavelet classifiers for EEG signals based on rough set methods[J].IEEE Trans on Neurocomputing,2001,36(1):103 ~ 112.

共引文献37

同被引文献56

引证文献9

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部