期刊文献+

Ant Colony System Algorithm for Real-Time Globally Optimal Path Planning of Mobile Robots 被引量:26

Ant Colony System Algorithm for Real-Time Globally Optimal Path Planning of Mobile Robots
下载PDF
导出
摘要 为活动机器人计划的即时全球性最佳的路径的一个新奇方法基于蚂蚁殖民地系统(交流) 被建议算法。这个方法包括三步:第一步正在利用 MAKLINK 图理论建立活动机器人的空间模型,第二步正在利用 Dijkstra 算法发现一条非最优的没有碰撞的路径,并且第三步正在利用 ACS 算法优化非最优的路径的地点以便产生全球性最佳的路径。建议方法是有效的并且能在即时路径被使用活动机器人计划的计算机模拟实验表演的结果。建议方法比与优秀人材模型一起基于基因算法计划方法的路径处于集中速度,答案变化,动态集中行为,和计算效率有更好的性能,这被验证了。 A novel method for the real-time globally optimal path planning of mobile robots is proposed based on the ant colony system (ACS) algorithm. This method includes three steps: the first step is utilizing the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is utilizing the Dijkstra algorithm to find a sub-optimal collision-free path, and the third step is utilizing the ACS algorithm to optimize the location of the sub-optimal path so as to generate the globally optimal path. The result of computer simulation experiment shows that the proposed method is effective and can be used in the real-time path planning of mobile robots. It has been verified that the proposed method has better performance in convergence speed, solution variation, dynamic convergence behavior, and computational efficiency than the path planning method based on the genetic algorithm with elitist model.
出处 《自动化学报》 EI CSCD 北大核心 2007年第3期279-285,共7页 Acta Automatica Sinica
基金 Supported by National Natural Science Foundation of P.R.China(50275150) National Research Foundation for the Doctoral Program of Higher Education of P.R.China(20040533035)
关键词 蚁群系统 运算法则 自动化系统 计算机技术 Mobile robot, globally optimal path planning,ACS algorithm, MAKLINK graph, Dijkstra algorithm
  • 相关文献

参考文献2

二级参考文献13

  • 1马兆青,袁曾任.基于栅格方法的移动机器人实时导航和避障[J].机器人,1996,18(6):344-348. 被引量:91
  • 2蒋新松.未来机器人技术发展方向的探讨[J].机器人,1996,18(5):285-291. 被引量:45
  • 3王越超.多机器人协作系统研究:博士论文[M].哈尔滨工业大学,1999..
  • 4Keron Y, Borenstein J. Potential field methods and their inherent limitations for mobile robot navigation [A]. Proceedings of the International Conference on Robotics and Automation [C]. California,1991.1398-1404.
  • 5KennedyJ, Ebethart R C. Particle swarm optimization [A]. Proceedings of the IEEE International Coference on Neural Networks [C]. Piscataway, New Jersey: IEEEE Service Center,1995,4.1942-1948.
  • 6Eberhart R C, Shi Y. Particle swarm optinization: developments, applications and resources [A]. Proceedings of the Congress on Evolutionary Computation 2001 [C]. Piscataway, New Jersey: IEEE Press,2001.81-86.
  • 7Habib M K, Asama H. Efficient method to generate collision free paths for autonomous mobile robot based on new free space structuring approach [A]. IEEE/RSJ International Workshop on Intelligent Robots and Systems[C]. Osaka, Japan:1991.563-567.
  • 8Clerc M, Kennedy J. The particle swarm-explosion, stability and convergence in a multidimensional complex space[J]. IEEE Transaction on Evolutionary Computer,2002,6(1):58-73.
  • 9袁曾任,高明.在动态环境中移动机器人导航和避碰的一种新方法[J].机器人,2000,22(2):81-88. 被引量:58
  • 10蔡鹤皋.机器人将是21世纪技术发展的热点[J].中国机械工程,2000,11(1):58-60. 被引量:43

共引文献384

同被引文献249

引证文献26

二级引证文献255

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部