期刊文献+

基于AQPSO的数据聚类 被引量:3

Data clustering using adaptive quantum-behaved particle swarm optimization
下载PDF
导出
摘要 提出了一种新的聚类算法——适应性的基于量子行为的微粒群优化算法的数据聚类(AQPSO)。AQPSO在全局搜索能力和局部搜索能力上优于PSO和QPSO算法,它的适应性方法比较接近于高水平智能群体的社会有机体的学习过程,并且能保证种群不断地进化。聚类过程都是根据数据向量之间的Euclidean(欧几里得的)距离。PSO和QPSO的不同在于聚类中心的进化上。QPSO和AQPSO的不同在于参数的选择上。实验中用到4个数据集比较聚类的效果,结果证明了AQPSO聚类方法优于PSO和QPSO聚类方法。 In this paper we propose a new clustering algorithm-Adaptive Quantum-behaved Particle Swarm Optimization(AQPSO).The QPSO outperforms PSO and QPSO in global search ability and local search ability,because the adaptive method is more approximate to the learning process of social organism with high-level swarm intelligence and can make the population evolve persistently.All the process of clustering based on the Euclidean distance among data vectors.The difference between PSO and QPSO is the evolution of the cluster-centroids,and the difference between QPSO and AQPSO is the selection of the parameter value.We compare the performance of the three clustering method on four datasets,experiments result show AQPSO clustering superiority.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第10期186-188,198,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60474030)
关键词 聚类 AQPSO QPSO 参数选择 clustering AQPSO QPSO parameter selection
  • 相关文献

参考文献5

  • 1Sun J,Xu W B.A global search strategy of quantum-behaved particle swarm optimization[C]//Proceedings of IEEE Conference on Cybernetics and Intelligent Systems,2004:111-116.
  • 2Sun J,Feng B,Xu W B.Particle swarm optimization with particles having quantum behavior[C]//Proceedings of 2004 Congress on Evolutionary Computation,2004:325-331.
  • 3Sun J.Parameter selection of quantum-behaved particle optimization[C]//LNCS 3612:ICNC 2005,Springer-Verlag,Berlin Heidelberg,2005:543-552.
  • 4van der Merwe D W,Engelbrecht A P.Data clustering using particle swarm optimization[EB/OL].(2006-09-01).http://cirg.cs.up.ac.za/publications/CEC2003d.pdf.
  • 5Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings of the IEEE International Joint Conference on Neural Networks,1995,4:1942-1948.

同被引文献50

  • 1冯静,舒宁.群智能理论及应用研究[J].计算机工程与应用,2006,42(17):31-34. 被引量:12
  • 2高尚,杨静宇.一种新的基于粒子群算法的聚类方法[J].南京航空航天大学学报,2006,38(B07):62-65. 被引量:12
  • 3龙海侠,须文波,孙俊.基于QPSO的数据聚类[J].计算机应用研究,2006,23(12):40-42. 被引量:14
  • 4韩琳,贺兴时.基于免疫粒子群优化的模糊C均值聚类算法[J].西安工程科技学院学报,2007,21(3):355-361. 被引量:4
  • 5HAN Jia-wei, MICHELINE K. Data mining: concepts and techniques [ M ]. San Francisco: Morgan Kaufmann Publishers,2001.
  • 6HAN Jia-wei, MICHELINE K, PEI Jian. Data mining: concepts and techniques [ M]. 2nd ed. San Francisco: Morgan Kaufmann Publishers, 2006.
  • 7FRIGUI H, KRISHNAPURAM R. A robust competitive clustering algorithm with applications in computer vision [ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1999, 21 ( 5 ) : 450- 465.
  • 8JAIN A K, MURTY M N, FLYNN P J. Data clustering: a review [J]. ACM Computing Surveys, 1999,31 (3) :265-323.
  • 9OMRANG M, SALMAN A, ENGELBRECHT A P. Image classification using particle swarm optimization [ C ]//Proc of the 4th Asia-Pacific Conference on Simulated Evolution and Learning. 2002:370- 374.
  • 10MERWE D W van der, ENGELBRECHT A P. Data clustering using particle swarm optimization [ C]//Proc of IEEE Congress on Evolutionary Computation. 2003 : 215- 220.

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部