期刊文献+

Chirp信号参数估计算法性能比较 被引量:5

Performance comparison of parameters estimation algorithms of chirp signals
下载PDF
导出
摘要 通过数值仿真定量地比较了三种Chirp信号参数估计算法——解线调法、迭代估计法和局部搜索最大似然法的性能,并定性地比较了算法的运算量。仿真结果表明,在三种算法中,局部搜索最大似然法的估计性能最好,而运算量居中;解线调法运算量最大,但估计性能居中;迭代估计法的估计性能最差,但运算量最小。对于实际系统,应根据不同的估计精度和运算量要求,灵活选择不同的算法。综合考虑估计性能和运算量之间的折衷可以得到结论,在三种算法中局部搜索最大似然法是一种相对较好的选择。 In this paper, a quantitive performance comparison is made by numerical experiments among three different parameters estimation algorithms for chirp signals: dechirp method, iterative approach and local-searching maximum-likelihood (LSML) method. Also their computation loads are compared qualitatively. The results of simulation show that the estimation performance of LSML is the best and its computation loads are medial. The computation loads of dechirp method is the highest but its estimation performance is medial. The estimation performance of iterative approach is the worst; however, its computation loads is the lowest. For practical systems, we should make a flexible choice among different algorithms according to different requirements for estimation accuracy and computation loads. Considering both the estimation performance and the computation loads, we conclude that LSML method is a relatively good choice in the three algorithms.
出处 《海军工程大学学报》 CAS 北大核心 2007年第2期1-5,共5页 Journal of Naval University of Engineering
基金 国家863计划资助项目(2005AA635220)。
关键词 CHIRP信号 参数估计 性能比较 均方差 chirp signals parameters estimation performance comparison mean square error
  • 引文网络
  • 相关文献

参考文献9

  • 1MARQUES P A C,DIAS J M B.Velocity estimation of fast moving targets using a single SAR sensor[J].IEEE Transactions on Aerosp.and Electron.Syst.,2005,41(1):75-89.
  • 2DJURIC P M,KAY S M.Parameter estimation of chirp signals[J].IEEE Transactions on Acoust.Speech.Signal Processing,1990,38(12):2118-2126.
  • 3邢孟道,保铮,冯大政.基于调幅-线性调频信号参数估计的机动目标成像方法[J].现代雷达,2000,22(6):44-49. 被引量:17
  • 4IKRAM M Z,ABED-MERAIM K,HUA Y B.Estimating the parameters of Chirp signals:an iterative approach[J].IEEE Transactions on Signal Processing,1998,46(12):3436-3441.
  • 5冯小平,李晨阳.线性调频信号参数快速估计[J].系统工程与电子技术,2005,27(2):237-239. 被引量:14
  • 6ZHOU G T,GIANNAKIS B G,SWAMI A.On polynomial phase signals with time-varying amplitudes[J].IEEE Transactions on Signal Processing,1996,44(4):848-861.
  • 7MANOLAKIS D G,INGLE V K,KOGON S M.统计与自适应信号处理--谱估计、信号建模、自适应滤波和阵列信号处理[M].北京:电子工业出版社,2003.
  • 8薛文虎,唐劲松,席泽敏,等.合成孔径技术用于高频地波雷达可行性探讨[C]// 罗群.中国合成孔径雷达会议CSAR-2005论文集.北京:电子工业出版社,2006.
  • 9PELEG S,PORAT B.Estimation and classification of polynomial-phase signals[J].IEEE Transactions on Inforation Theory,1991,37(2):422-430.

二级参考文献5

共引文献27

同被引文献29

  • 1黄文晶,梅军辉,李文君,王哲坤.一种有效的窄带干扰抑制技术[J].舰船电子工程,2008,28(4):84-86. 被引量:5
  • 2冯小平,李晨阳.线性调频信号参数快速估计[J].电子对抗技术,2004,19(6):7-10. 被引量:9
  • 3陈恩庆,陶然,张卫强.一种基于分数阶傅立叶变换的时变信道参数估计方法[J].电子学报,2005,33(12):2101-2104. 被引量:21
  • 4Irfan A, Naofal A, John E H. Doppler characterization for LEO satellite [J]. IEEE Trans on Commun, 1998, 146(3):309-313.
  • 5Ahmed I Zayed. On the Relationship between the Fourier and Fractional Fourier Transforms[J].IEEE Signal Processing Letters,1996,12(3):310 - 311.
  • 6Jian Jiun Ding, Soo Chang Pei. Fractional Fourier Transforms and Wigner Distribution Functions for Stationary and Non- Stationary Random Process[A]. ICASSP 2006[C]. 2006, (3):428 - 431.
  • 7Wei Yu, Huhng Chang, Sun De bao, et al. The Detection of the Linear Frequency modulated Signal by Fractional Fourier Transform[A]. Proceedings of the Second International Conference on Information Technology for Application[C]. 2004:322 - 325.
  • 8Olcay Akay G, Faye Boudreaux- Barrels. Fractional Autocorrelation and Its Application To Detection and Estimation of Linear FM Signals[A]. Time- Frequency and Time-Scale Analysis, 1998. Proceedings of the IEEE- SP International Symposium[C]. 1998:213 - 216.
  • 9Capus C, Brown K. Fractional Fourier Transform of the Gaussian and Fractional Domain Signal Support[J]. IEEE Proc. Vis. Image Signal Process, 2003,150 (2):99 - 106.
  • 10Luis Almeida B. The Fractional Fourier Transform and Time-Frequency Representations[J]. IEEE Trans. on Signal Processing, 1994,42 ( 11 ) : 3 084 - 3 091.

引证文献5

二级引证文献17

;
使用帮助 返回顶部