期刊文献+

基于ART-并行BP神经网络的柴油机故障诊断研究 被引量:6

Research on Fault Diagnosis of Diesel Engine Based on ART-BP Neural Network
下载PDF
导出
摘要 造成柴油机故障的因素十分复杂,既存在单一类的故障,也存在多故障并存的现象,而且还会出现新型故障,仅仅依靠单一神经网络技术的故障诊断已经很难满足对柴油机的有效诊断要求。本文在信息决策层融合的基础上,以自适应谐振理论ART和误差反向传播并行BP两种神经网络为基础,建立了用于柴油机故障诊断的新型神经网络模型,以对柴油机系统工作过程多种故障进行诊断识别。通过与单一神经网络诊断识别结果的分析和比较,验证了该神经网络诊断模型的可行性,它能够进行多传感器信息综合诊断,既能识别单故障和并发故障,又具有识别新型故障的能力,可有效地提高对柴油机故障诊断的准确性和可靠性。 Factors causing diesel engine faults are very complicated and it is difficult to carry out effective diagnosis using the diagnosis technique that relies only on neural network because there may be both single fault anti multiple faults as well as new faults in a diesel engine. This paper established a neural network model for diagnosing diesel engine faults using the adaptive resonance theory(ART) and the back propagation(Be) neural network in order to diagnose and identify the multiple faults that occur during the operation of a diesel engine. The feasibility of the new neural network model was verified by analysing and comparing the diagnosis results gained from a single neural network model. The new neural network model can perform synthetic diagnosis of multi-sensor information because of its ability to identify a single fault, multiple faults and new faults, thus enhancing the accuracy and reliability of diesel engine fault diagnosis.
出处 《机械科学与技术》 CSCD 北大核心 2007年第4期412-416,共5页 Mechanical Science and Technology for Aerospace Engineering
关键词 柴油机 故障诊断 ART-并行BP神经网络 diesel engine fault diagnosis ART-BP neural network
  • 相关文献

参考文献6

二级参考文献9

  • 1梁百川.多传感器信息融合决策研究[J].航天电子对抗,1994,(3):7-16.
  • 2Ren C Lou, et al. Multisensor Integration and Fusion in Intelligent Systems[J].IEEE Trans. on Systems, Man and Cybernetics,1989,19(5):901~931
  • 3Roggermann M C, et al. Multisensor Information Fusion for Target Detection and Classification[J], SPIE,931, 8~13
  • 4Zhu Qing, et al. Dempster-Shafer Approach in Prepositional Logic[J].Int J of Intelligent Systems,1993(8):341~349
  • 5Selzer F, et al.LADAR and FILR Based Sensor Fusion for Automatic Target Classification[J], SPIE, 1003,236~246
  • 6Takashi Matsuyama:Belief Formation from Observation and Belief Integration Using Virtual Belief Space in Dempster-Shafer Probability Model[A].Proceeding of the 1994 Int Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI'94)[C],Las Vegas, NV,Oct.2~5,379~386,1994
  • 7谭民,疏松桂.基于神经元网络的控制系统故障诊断[J].控制与决策,1990,5(1):58-60. 被引量:19
  • 8王江萍.基于多传感器融合信息的故障诊断[J].机械科学与技术,2000,19(6):950-952. 被引量:18
  • 9卫绍元,张蕾.基于神经网络的汽车故障诊断专家系统开发中的问题研究[J].公路交通科技,2001,18(2):20-20. 被引量:10

共引文献27

同被引文献58

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部