期刊文献+

Groundwater level prediction based on hybrid hierarchy genetic algorithm and RBF neural network 被引量:1

Groundwater level prediction based on hybrid hierarchy genetic algorithm and RBF neural network
下载PDF
导出
摘要 As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcoming of the conventional radial basis function neural network (RBF NN), presented a new improved genetic algorithm (GA): hybrid hierarchy genetic algorithm (HHGA). In training RBF NN, the algorithm can automatically determine the structure and parameters of RBF based on the given sample data. Compared with the traditional groundwater level prediction model based on back propagation (BP) or RBF NN, the new prediction model based on HHGA and RBF NN can greatly increase the convergence speed and precision.
出处 《Journal of Coal Science & Engineering(China)》 2007年第2期170-174,共5页 煤炭学报(英文版)
关键词 hybrid hierarchy genetic algorithm radial basis function neural network groundwater level prediction model 混合分层遗传算法 RBF神经网络 地下水位 预测模型
  • 相关文献

同被引文献9

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部