期刊文献+

电子-空穴气屏蔽影响下有限深量子阱中电子与空穴的本征态 被引量:8

Eigenfunctions of Electron and Hole in a Quantum Well under the Influence of Screening Due to the Electron-hole Gas
下载PDF
导出
摘要 考虑电子-空穴气屏蔽的影响,研究了有限深量子阱中电子和空穴的本征能量及其相应的各级本征态.电子-空穴气引起的极化电场由泊松方程给出,而电子和空穴则满足考虑极化电场下的薛定谔方程,因此本文自洽计算了泊松方程与薛定谔方程.数值结果表明,内电场使电子和空穴向相反方向靠近势垒,而电子-空穴气将屏蔽内电场使得电子和空穴向阱中心靠近;势垒、内电场和屏蔽之综合效应将影响电子和空穴的本征能量和本征波函数.本文的方法还可推广到求解任意势中的定态薛定谔方程. quantum well gas are invest (described by computed by ~ Eigenfunctions of the electron and hole and their corresponding eigenvalues in a with finite barriers under the influence of screening effect induced by the electron-hole igated. The electron and hole satisfy the Schroedinger equations with a polarized field the Poisson equation) induced by the electron-hole gas. The numerical results are solving self-consistently the Poisson equation and Schroedinger equation. It is shown from the numerical result that the internal electric field makes the electron and hole separate to move towards the barriers, whereas the presence of the electron-hole gas will screen the field and make the carriers move towards the center of the quantum well. The combined effect from barriers, internal electric field and screening may influence the eigenenergies and eigenfunctions of the electron and hole. Moreover, the method used here can be generalized to solve the time-independent Schroedinger equations with arbitrary potentials.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期272-277,共6页 Journal of Inner Mongolia University:Natural Science Edition
基金 国家自然科学基金资助项目(60566002) 内蒙古自治区优秀学科带头人计划项目
关键词 定态薛定谔方程 电子-空穴气的屏蔽 本征值 本征态 time-independent Schroedinger equation screening of electron-hole gas eigenvalues eigenfunctions
  • 引文网络
  • 相关文献

参考文献11

  • 1Salem L D,Montemayor R.Modified Ricatti approach to partially solvable quantum Hamiltonians:Finite Laurent-type potentials[J].Phys.Rev.A,1991,43:1169~ 1182.
  • 2Montemayor R,Salem L D.Modified Riccati approach to partially solvable quantum Hamiltonians.Ⅱ.Morseoscillator-related family[J].Phys.Rev.A,1991,44:7 037~ 7 046.
  • 3Barclay D T.New exactly solvable Hamiltonians:Shape invariance and self-similarity[J].Phys.Rev.A,1993,48:2786~2797.
  • 4Shabat A.The infinite-dimensional dressing dynamical system[J].Inverse Prob.1992,8(2):303~308.
  • 5Spiridonov V.Exactly solvable potentials and quantum algebras[J].Phys.Rev.Lett.,1992,69:398~ 401.
  • 6班士良,HasbunJE,梁希侠.量子隧穿的一种数值计算方法[J].内蒙古大学学报(自然科学版),2000,31(1):25-29. 被引量:8
  • 7宫箭,梁希侠,班士良.GaAs-Al_xGa_(1-x)As双势垒结构中电子共振隧穿寿命[J].Journal of Semiconductors,2005,26(10):1929-1933. 被引量:2
  • 8李培咸,郝跃,范隆,张进城,张金凤,张晓菊.基于量子微扰的AlGaN/GaN异质结波函数半解析求解[J].物理学报,2003,52(12):2985-2988. 被引量:4
  • 9Kalliakos S,Lefebvre P,Taliercio T.Nonlinear behavior of photoabsorption in hexagonal nitride quantum wells due to free carrier screening of the internal fields[J].Phys.Rev.B,2003,67:205307.
  • 10Bigenwald P,Kavokin A,Gil B,Lefebvre P.Exclusion principle and screening of excitons in GaN/AlxGa1-xN quantum wells[J].Phys.Rev.B,2001,63:035315.

二级参考文献34

  • 1[1]Oder T N,Lin J Y,Jianga H X 2001 Appl.Phys.Lett.79 12
  • 2[2]Lu W,Yang J,Khan M A 2001 IEEE Trans.Electron.Dev.48 581
  • 3[3]Zhang N Q,Keller S,Parish G et al 2000 IEEE Electron.Dev.Lett.21 421
  • 4[4]Eastman L F,Tilak V,Smart J et al 2001 IEEE Trans.Electron.Dev.48 479
  • 5[5]Tavernier P R,Etzkorn E V,Wang Y et al 2000 Appl.Phys.Lett.77 1804
  • 6[6]Ambacher O,Smart J,Shealy J R et al 1999 J.Appl.Phys.85 3222
  • 7[7]Zhang Y F,Singh J 1999 J.Appl.Phys.85 587
  • 8[8]Stengel F,Mohammad S N,Morkoc H 1996 J.Appl.Phys.80 3031
  • 9[10]McCarthy L S,Kozodoy P,Rodwell M J W et al 1999 IEEE Electron.Dev.Lett.20 277
  • 10[11]Javorka P,Alam A,Wolter M et al 2002 IEEE Electron.Dev.Lett.23 4

共引文献10

同被引文献88

引证文献8

二级引证文献5

;
使用帮助 返回顶部