摘要
Using the coordinate transformation method, we solve the one-dimensional Schrodinger equation with position-dependent mass. The explicit expressions for the potentials, energy eigenvalues, and eigenfunctions of the systems are given. The eigenfunctions can be expressed in terms of the Jacobi, Hermite, and generalized Laguerre polynomials. All potentials for these solvable systems have an extra term Vm, which is produced from the dependence of mass on the position, compared with those for the systems of constant mass. The properties of Vm for several mass functions are discussed.
基金
The project supported by National Natural Science Foundation of China for 0utstanding Young Scientists under Grant No. 10125521, the Doctoral Fund of the Ministry of Education under Grant No. 20010284036, the State Key Basic Research Development Program of China under Grant No. G2000077400, the Chinese Academy of Sciences Knowledge Innovation Project under Grant No. KJCX2-SW-N02, and National Natural Science Foundation of China under Grant No. 60371013