摘要
证明了如下结果:(1)空间X是几乎弱加细空间当且仅当X是几乎离散弱加细可膨胀的,并且X的每个开覆盖u={Uα:α∈Λ},都存在X的稠密子集D和u的开加细V=∪n∈ωVn,使得x∈D存在b∈ω和α∈Λ有x∈Uα,并且st(x,Vn)∪βα;(2)如果X=∏α∈λXα是|Λ|—仿紧空间,则X是几乎弱加细空间,当且仅当F∈[Λ]<ω,∏α∈FXα是几乎弱加细空间;(3)如果X=∏α∈ΛXα是可数仿紧的,则下列三条等价:X是几乎弱加细空间;F∈[Λ]<ω,α∏∈FXα是几乎弱加细的;n∈ω,i∏nXi是几乎弱加细的。
The following results are proved ( 1 ) A space X is nearly weak ^-θ refinable iff X is nearly discrately weak ^-θ refinable expandable and for every open cover V= { Uα :α ∈ ∧} of X then there is a dense set D belong to X and a V= Un∈ω Vn of open refinements of V such that for each x∈D there are n∈ω and α∈∧ with x∈Uα and st ( x,Vn) belong to U β≤α; ( 2 ) let X=П Xα be |∑|- paracompact, then it is weak ^-θ refinable space if Пα∈F Xα is weak ^-θ refinable space for every F∈[ω]^〈ω;( 3 )and for countable paracompace X=Пα∈∧ Xi, the followings are equivalent :X is weak ^-θrefinable ;arbitary F∈[ω]^〈ω,Пα∈F Xi is nearly weak ^-θrefinable ;arbitary n∈ω,Пi≤n Xi is weak ^-θrefinable space.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2007年第2期128-131,共4页
Journal of Nanchang University(Natural Science)
基金
成都理工大学科研基金资助项目(R230246)
关键词
几乎弱^-θ加细空间
几乎离散弱^-θ可膨胀
一仿紧
可数仿紧
weak ^-θ refinable space
nearly discretely weak ^-θ refinable expandable
| ∧ | - paracompact
countable paracompact