期刊文献+

基于熵及不变矩特征的图像检索 被引量:14

Image retrieval based on entropy and invariant moments
下载PDF
导出
摘要 提出了一种基于熵及不变矩特征的图像检索算法。图像首先被划分为不同分块,结合图像信息熵的概念,提出采用单元熵来描述分块特征,从而将图像转化为由单元熵构成的熵矩阵;在此基础上,利用不变矩来描述该熵矩阵的特征,并在对该特征归一化的基础上用于图像检索。结合不变矩的特性,试验中对算法的尺度不变性、旋转不变性、平移不变性及对噪声的不敏感性进行了验证,试验结果证明了算法的有效性。同时,由于熵的对称特性,算法对于图像灰度的变化也有较强的鲁棒性。 A new image retrieval algorithm based on entropy and invariant moments was presented. Though entropy was widely used in image retrieval, it didn't contain any spatial information. To solve such problem, an image was firstly partitioned into equal-sized sub-images. Then, unit entropy was introduced to describe its spatial feature based on the definition of entropy. Combined with unit entropy, an image was transformed to an entropy matrix. Then, Hu invariant moments and five new generalization invariant moments of the entropy matrix were calculated and normalized as an index. It is shown through the experiments that this algorithm is scale, rotation and translation invariant. In addition, the algorithm is not sensitive to image noise and the change of the image gray.
出处 《光电工程》 EI CAS CSCD 北大核心 2007年第6期102-106,115,共6页 Opto-Electronic Engineering
基金 苏州大学江苏省计算机信息处理技术重点实验室开放基金 河南省教育厅自然科学基础研究基金(137207) 河南理工大学博士基金(B050901) 河南理工大学骨干教师资助基金 河南省基础与前沿技术研究计划项目(072300460050)
关键词 图像检索 单元熵 熵矩阵 不变矩 Image retrieval Unit entropy Entropy matrix Invariant moments
  • 相关文献

参考文献6

  • 1M.J.SWAIN,D.H.BALLARD.Color indexing[J].International Journal of ComputerVision,1991,7(1):11-32.
  • 2S.LIM,G.J.LU.Spatial statistics for content-based image retrieval[A].Proceedings of the International Conference on Information Technology:Computers and Communications(ITCC)[C].Monash Univ,Clayton,Vic,Australia:IEEE,2003.155-159.
  • 3D.S.ZHANG.Image Retrieval Based on Shape[D].Australia:Monash University,2002.
  • 4孙君顶,毋小省,周利华.基于信息熵的图像检索[J].西安电子科技大学学报,2004,31(2):223-228. 被引量:25
  • 5刘进,张天序.图像不变矩的推广[J].计算机学报,2004,27(5):668-674. 被引量:47
  • 6洪安详.基于内容的图像检索若干论题研究[D].杭州:浙江大学计算机科学与技术学院,2003.

二级参考文献20

  • 1Chan S K. Content-based Image Retrieval[D]. Singapore: National Urfiversity of Singapore, 1994.
  • 2Swain M J, Ballard D H. Color Indexing[J]. Int J Comput Vision, 1991, 7(1): 11-32.
  • 3Gong st', Zhang H, Chuan C. An Image Database System with Fast Image Indexing Capability Based on Colour Histograms[ A].Proceedings of IEEE 10's Ninth Annum International Conference[ C]. Singapore: IEEE, 1994. 407-411.
  • 4Persoon E, Fu K S. Shape Discrimination Using Fourier Descriptors[J] . IEEE Trans on Systems, Man and Cybernetics, 1977, 7(3) :170-179.
  • 5Kauppinen H, Seppanen T, Pietikainen M. An Experimental Comparison of Autoregressive and Fourier-Based Descriptors in 2D Shape ClassLfication[J]. IEEE Trans on PAMI, 1995, 17(2): 201-207.
  • 6Mehtre B M, Kankanhalli M S, Lee W F. Shape Measures for Content Based Image Retrieval: a Comparison [ J ]. Information Processing & Management, 1997, 33(3) : 319-337.
  • 7Lu G J, Sajjanhar A. Region-based Shape Representation and Similarity Measure Suitable for Content-based Image Retrieval[J].Multimedia System, 1999, 7(2): 165-174.
  • 8Safar M. Shahabi C, Sun X. Image Retriew, d by Shape: a Comparative Study[A]. IEEE Int Conf on Multimedia and Expo[C]. New York: IEEE. 2000. 141-144.
  • 9Charkrabarti K, Binderberger M O, Porkaew K, et al. Similar Shape Retrieval in MARs[A]. IEEE Int Conf on Multimedia and Expo[C]. New York: IEEE, 2000. 709-712.
  • 10Smith J R, Chang S F. Transform Features for Texture Classification and Discrimination in Large Image Databases[ A]. Proc IEEE ICIP'95[C]. New York: IEEE, 1995. 407-411.

共引文献71

同被引文献93

引证文献14

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部