期刊文献+

神经网络集成融合模型研究及应用 被引量:2

Research on Neural Network Integration Fusion Method and Application
下载PDF
导出
摘要 针对专家系统等单一模型解决发动机故障诊断存在的算法复杂度高、诊断准确率低等问题,提出了BP神经网络集成与DS证据推理相融合的神经集成融合模型,不仅实现了发动机不同部位的专家经验与实际观测数据的特征级融合,还实现了多个模型的优势互补。通过对该方法和传统的专家系统方法比较得出,神经网络集成融合方法提高了7.1%的诊断准确率。 A new fusion model is proposed, which is the combination of integration BP neural networks models and DS evidence reasoning model, to solve the problems of low precision rate in automotive engine fault diagnosis by traditional expert system. The method of this paper not only realizes feature level fusion of all subjective observation data and expert experiments on different parts of engineer, but also realizes the predominance compensation of different models. In simulation experiment, by comparison between the two methods, this method proposed can improve diagnosis precision by 7.1% while reduces time and complexity.
作者 张晓丹 赵海
出处 《计算机工程》 CAS CSCD 北大核心 2007年第14期210-212,共3页 Computer Engineering
基金 国家自然科学基金资助项目(69873007)
关键词 故障诊断 神经网络集成融合模型 特征级融合 诊断准确率 fault diagnosis neural network integration fusion model feature fusion diagnosis precision
  • 相关文献

参考文献7

  • 1斯卡沃勒尔.汽车构造原理与维修应用(发动机篇)[M].北京:机械工业出版社,2004.
  • 2Hall D.Mathematical Techniques in Multisensor Data Fusion[M].Norwood:Artech House,1992.
  • 3长春汽车研究所.发动机实验技术手册[M].长春:吉林科学技术出版社,1997.
  • 4张晓丹,赵海,魏守智.油藏预测问题中主/客观证据融合方法研究[J].系统仿真学报,2005,17(10):2537-2540. 被引量:3
  • 5周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8. 被引量:247
  • 6Zhang Yu,Deng Mingxing,Wang Guozhuang.Distribution of Remaining Oil in Complex Fault Block at the Super High Water-cut Stage[J].Scientia Geologica Sinica,1999,8(4):547-551.
  • 7Valentini G,Masuli F.Ensemles of Learning Machines[C] //Proceedings of the 13^th Annual Conference on Uncertainty in Artificial Intelligence,Providence,Rhode Island,USA.1997.

二级参考文献7

共引文献248

同被引文献23

  • 1Hansen L K, Salamon R Neural Networks Ensembles[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001.
  • 2Breiman L. Bagging Predictors[J]. Machine Learning, 1996, 24(2): 123-140.
  • 3Liu Yong, Yao Xin. Simultaneous Training of Negatively Correlated Neural Networks in an Ensemble[J]. IEEE Trans. on Systems, Man, and Cybernetics, 1999, 29(6): 716-725.
  • 4Zhou Zhihua, Wu Jianxin, Tang Wei. Ensembling Neural Networks: Many Could be Better than All[J]. Artificial Intelligence, 2002, 137(1/2): 239-263.
  • 5De Castro L N, Timmis J. An Artificial Immune Network fbr Multi-modal Function Optimization[C]//Proc. of IEEE Congress on Evolutionary Computation. [S. I.]: IEEE Press, 2002,
  • 6Singh S. 2D Spiral Recognition Using Possibilistic Measures[J]. Pattern Recognition Letters, 1998, 19(2): 141-147.
  • 7Liang Yanchun, Feng D P, Lee H P, et al. Successive Approxi- mation Training Algorithm for Feed Forward Neural Networks[J]. Neurocomputing, 2002, 42(1-4): 311-322.
  • 8Hansen L K, Salamon P. Neural Network Ensembles[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001.
  • 9Sollich P, Krogh A. Learning with Ensembles: How over Fitting Can be Useful[C]//Proc. of Annual Conference on Neural Information Processing System. Cambridge, USA: MIT Press, 1996: 190-196.
  • 10Wang Shulin, Yin Shuang, Jiang Minghui. Hybrid Neural Network Based on GA-BP for Personal Credit Scoring[C]//Proc. of the 4th International Conference on Natural Computation. [S. 1.]: IEEE Press, 2008: 209-214.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部