摘要
本文采用Beti互等功定理,导出了三维不连续位移基本解的一般形式,然后以该基本解为核函数,建立了求解三维多裂纹问题的超奇异边界积分方程组,并采用三角形单元变换技术和有限部分积分的方法给出了超奇异积分的数值解法,引入非协调单元处理技术解决了法向不确定的角点问题。最后。
Making use of the Betti reciprocal work theorem, this paper derives the general fundamental solutions of displacement discontinuity in three dimensions, and then establishes the displacement discontinuity super-singular integral equations to solve three-dimensional multi-crack problems, in which the super-singular integral calculations are given by adopting the triangle element transformation and the finite-partial integral, and the angular point problems are solved by introducing inharmonical elements. Finally, stress intensity factors can be directly calculated by the discontinuity displacements of cracks.
出处
《工程力学》
EI
CSCD
北大核心
1997年第2期82-89,共8页
Engineering Mechanics
基金
国家自然科学基金
水利部重点科研基金
关键词
不连续位移
超奇异积分
三维多裂纹
裂纹扩展
discontinuity displacement, fundamental solution, super-singular integral equation method, finite-partial integral, three dimensional multi-crack