摘要
SnSb alloy powders for the anode of Li-ion batteries were synthesized by two kinds of reduction precipitation methods: solution titration and rapid mixing. Two kinds of SnSb alloy powders showed different phase compositions and particle morphologies although the same starting materials were used. The SnSb alloy electrode synthesized by titration exhibits high reversible specific capacity and good cycling stability, whereas the rapid-mixing sample shows high irreversible capacity and fast capacity fade. The broad particle size distribution of SnSb powders synthesized by titration is considered to be responsible for the improvement of cycling stability. The initial charge-discharge efficiency exceeding 80% has been obtained for the titration sample. The electrochemical reaction process of two kinds of synthesized SnSb composite electrodes was characterized by cyclic voltammetry and AC impedance techniques.
SnSb alloy powders for the anode of Li-ion batteries were synthesized by two kinds of reduction precipitation methods: solution titration and rapid mixing. Two kinds of SnSb alloy powders showed different phase compositions and particle morphologies although the same starting materials were used. The SnSb alloy electrode synthesized by titration exhibits high reversible specific capacity and good cycling stability, whereas the rapid-mixing sample shows high irreversible capacity and fast capacity fade. The broad particle size distribution of SnSb powders synthesized by titration is considered to be responsible for the improvement of cycling stability. The initial charge-discharge efficiency exceeding 80% has been obtained for the titration sample. The electrochemical reaction process of two kinds of synthesized SnSb composite electrodes was characterized by cyclic voltammetry and AC impedance techniques.
基金
the National Natural Science Foundation of China (No.50371007)
the National High-Tech Research and Development Program of China (863 Program, No.2006AA03Z231).