期刊文献+

船舶智能化信息系统的探讨 被引量:9

INFORMATION TECHNOLOGY Discussion on Marine Intelligent Information System
下载PDF
导出
摘要 探讨了船舶智能信息管理系统的框架结构和组成方法。该智能系统在目前海上单船的自动化系统的基础上,主要由基于智能的航海、机舱和货运监控等几个主要的子系统联合而成。在智能信息处理方法方面,研究了基于数据融合(DF)和数据挖掘(DM)的知识发现方法,对驾驶、机舱和货运监控等智能信息系统的几个主要子系统的信息进行集成管理与综合处理。 This paper discusses the structure and forming method of a marine intelligent information management system. On the basis of the automatic systems now used for ship control, the intelligent system consists of some intelligent subsystems, such as navigation system, marine engine system and cargo system. In the intelligent information processing, a knowledge discovery method based on data fusion (DF) and data mining (DM) is researched for integrated management and treatment of the information from the main subsystems for ship navigation, engine control and cargo monitoring.
作者 汤天浩
机构地区 上海海事大学
出处 《上海造船》 2007年第3期29-31,共3页 Shanghai Shipbuilding
基金 国家自然科学基金(60434020 60374020) 上海市教委科技项目(05FZ04)的资助
关键词 船舶 信息技术 智能系统 数据融合 数据挖掘 知识发现 ship information technology intelligent system data fusion data mining knowledge discovery
  • 相关文献

参考文献5

  • 1[1]汤天浩.船舶系统的未来发展:电气化、数字化与智能化[C].第六届上海国际工业博览会科技论坛,2004.
  • 2汤天浩.智能监控系统:新的理论、方法与进展[J].上海海运学院学报,2001,22(3):17-21. 被引量:5
  • 3[3]Wang Xuezhang.Data mining and knowledge discovery for process monitoring and control[M].Sringer-Verlag London Limited,UK,1999.
  • 4[4]Tang Tianhao,Yao Gang.An intelligence fusion system for ship fault-tolerant control[C].Preprints of IFAC Conference on Control Applications in Marine Systems,Ancona,Italy,July 7-9,2004:83-88.
  • 5[5]Tang Tianhao.A new intelligent system based on hybrid neural networks for process monitoring[C].Proceedings of the 2003 IEEE International Symposium on Intelligent Control,Houston,Texas.Oct.5-8 2003:941-946.

二级参考文献2

共引文献4

同被引文献63

  • 1王祯学,戴宗坤,肖龙,王标.信息系统风险控制的数学方法[J].四川大学学报(自然科学版),2004,41(6):1184-1187. 被引量:7
  • 2战希臣,金良安,迟卫.船舶安全管理决策的多目标信息效用模型研究[J].中国航海,2006,29(2):55-58. 被引量:2
  • 3张寿桂,彭国均.海监船舶导航与监控管理信息系统[J].上海海事大学学报,2006,27(3):31-35. 被引量:10
  • 4Pawlak Z. Rough sets [J]. International Journal of Computer and Information Sciences, 1982, 11 (5) : 341-356.
  • 5Ziarko W. Variable precision rough set model [J]. Journal of Computer and System Sciences, 1993, 46 (1) ; 39-59.
  • 6An A, Shah N, Chan C, Cercone N, Ziarko W. Discovering rules for water demand prediction: An en hanced rough-set approach [J]. Engineering Appliea tions of Artificial Intelligence, 1996, 9(6) : 645-653.
  • 7Inuiguchi M. Attribute reduction in variable precision rough set model [J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 2006, 14(4): 461-479.
  • 8The k-means clustering problem [EB/oL]. PDF: [2009 11-021. http://cseweb, ucsd. edu/- dasgupta/ 291/lec2. pdf.
  • 9Davi dArthurandandSergeiVassilvitskii, k-means + + :The Advantages of Careful Seeding[C]. Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms, 2007.
  • 10Charles Elkan. Using the Triangle Inequality to Accelerate k - Means[R]. Proceedings of the Twenti- eth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

引证文献9

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部