期刊文献+

基于用户兴趣的搜索引擎 被引量:7

USER INTEREST BASED SEARCH ENGINE
下载PDF
导出
摘要 随着WWW的出现和发展,Internet上出现的信息迅速增长。如何从大量的信息中获取有用的信息,正成为信息领域的关键技术。传统的搜索引擎没有考虑不同用户的兴趣,因此搜索出来的结果往往无法满足不同用户的特定需求。提出一种用户兴趣模型,能够有效表示用户兴趣,并对传统搜索引擎的搜索结果进行匹配度计算,从而将符合用户兴趣的结果返回给用户。基于这种模型开发了一个基于用户兴趣的法律领域的搜索引擎MyLaw。 With the emergence and evolution of WWW, the information on the Internet has increased greatly. Retrieving useful information from a large amount of information has become a key technology in the information area. Traditional search engine do not take different user's interest into consideration, so the result they retrieved can't satisfy user's specified needs. A user profile model is proposed, which can effectively reflect user's interest, compute similarity of user's interest against the results retrieved by the traditional search engine and returns the results that match the user's interest to the user. Based on this model, MyLaw, a user interest based search engine of legal area, is developed.
出处 《计算机应用与软件》 CSCD 北大核心 2007年第9期134-136,共3页 Computer Applications and Software
关键词 信息检索 向量空间模型 词向量 用户兴趣模型 反馈 Information retrieval VSM Term vector User profile model Feedback
  • 相关文献

参考文献5

二级参考文献11

  • 1D Goldberg, D Nichols, B Oki and D Terry. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12): 61-70.
  • 2F Kilander. A brief comparison of news filtering software. Unpublished paper, June 1995.
  • 3Shardanand, U and Maes, P. Social information filtering : Algorithms for automating "word of mouth". In Conference on Human Factors in Computing Systems-CHI'95.
  • 4Marko Balabanovic and Yoav Shoham. Content-based, collaborative recommendation. Communications of the ACM, 1997,40(3).
  • 5Terry R Payne, Peter Edwards, Chaire L Green. Experience with rule interface agents that learn[ J ]. IEEE Transactions on Knowledge and Data Engineering, 1997, 9(2) : 329- 335.
  • 6J J Rocchio. Relevance feedback in information retrieval. In: G Salton, Ed. SMART Retrieval System, Prentice Hail, pp.313- 323, 1971.
  • 7吴立德,大规模中文文本处理,1997年
  • 8揭春雨,中文信息学报,1989年,3卷,1期,1页
  • 9Salton G,Communications ACM,1975年,18卷,613页
  • 10揭春雨,刘源,梁南元.论汉语自动分词方法[J].中文信息学报,1989,3(1):1-9. 被引量:55

共引文献52

同被引文献38

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部