期刊文献+

Fe_3O_4八面体微晶的水热法制备与表征 被引量:14

Hydrothermal Synthesis and Characterization of Octahedral Fe_3O_4 Microcrystals
下载PDF
导出
摘要 在乙二醇与水(VC2H6O2/VH2O=5∶8)的混合溶剂中,通过K4[Fe(CN)6]与NaOH在200℃水热反应12h,制备了Fe3O4的八面体.采用X射线衍射仪、扫描电镜和透射电子显微镜对产物进行表征,并在室温下测试了它的磁学性能,结果表明,Fe3O4八面体为单晶面心立方相结构,尺寸约为0.7~6.3μm.它的矫顽力(Hc)为77.5Oe,饱和磁化强度(Ms)为98.53emu/g,剩余磁化强度(Mr)为6.27emu/g.研究了乙二醇,NaOH的浓度,反应温度和时间对产物形貌的影响,结果表明乙二醇在Fe3O4八面体的形成过程中起着关键作用,并提出了可能的生长机理. Octahedral Fe3O4 microcrystals have been synthesized through a simple hydrothermal reaction of K4[Fe(CN)6] with NaOH in aqueous ethylene glycol (Vc2H6O2/VH2O =5 : 8) at 200℃ for 12 h. The morphology and structure of Fe3O4 octahedrons were characterized with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results showed that the Fe3O4 octahedra are single crystals with the face-center cubic structure and a size distribution from 0.7 to 6.3 μm. Magnetic properties of Fe3O4 octahedra have been detected by a vibrating sample magnetometer at room temperature. The coercive force, saturation magnetization and remanent magnetization of Fe3O4 octahedra are about 77.5 Oe, 98.53 emu/g and 6.27 emu/g, respectively. The influence of ethylene glycol, concentration of NaOH, and reaction temperature and time on the morphology development was experimentally investigated. It was found that ethylene glycol molecules have a significant effect on the formation of Fe3O4 octahedra. A possible mechanism was also proposed to account for the growth of these Fe3O4 octahedra.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2007年第20期2336-2342,共7页 Acta Chimica Sinica
基金 国家自然科学基金(No.20573072) 教育部博士点基金(No.20060718010)资助项目.
关键词 水热法 八面体 FE3O4 磁学性能 hydrothermal process octahedron Fe3O4 magnetic property
  • 相关文献

参考文献32

  • 1Thapa, D.; Palkar, V. R.; Kurup, M. B.; Malik, S. K. Mater. Lett. 2004, 58, 2692.
  • 2Vander, Z. P. J., Bloemen, P. J. H. J. Magn. Magn. Mater. 2000, 211,301.
  • 3Sahoo, Y.; Goodarzi, A.; Swihart, M. T.; Tymish, Y. O.; Navjot, K.; Edward, P. F.; Paras, N. P. J. Phys. Chem. B 2005, 109, 3879.
  • 4Peikov, V. T.; Jeon, K. S.; Lane, A. M. J. Magn. Magn.Mater. 1999, 193, 311.
  • 5Cao, D. F.; He, P. L.; Hu, N. F. Analyst2003, 128, 1268.
  • 6Kirn, D. J.; Lyu, Y. K.; Choi, H. N.; Min, I. H.; Lee, W. Y. Chem. Commun. 2005, 2966.
  • 7Jain, T. K.; Morales, M. A.; Sahoo, S. K.; Leslie-Pelecky, D. L.; Labhasetwar, V. Mol. Pharm. 2005, 2, 194.
  • 8Wendorff, J. H.; Pietzonka, C.; Jia, Z. H.; Wang, G. Q. Chem. Phys. Chem. 2005, 6, 1461.
  • 9Parka, S. I.; Kimb, J. H.; Kim, C. O. J. Magn. Magn. Mater.2004, 272-276, 2340.
  • 10Veiseh, O.; Sun, C.; Gunn, J.; Kohler, N.; Gabikian, P.; Lee,D.; Bhattarai, N.; Ellenbogen, R.; Sze, R.; Hallahan, A.; Olson, J.; Zhang, M. Q. Nano. Left. 2005, 5, 1003.

二级参考文献19

共引文献60

同被引文献160

引证文献14

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部