期刊文献+

基于一种自适应并行遗传算法的网格资源选择策略 被引量:2

Grid Resource Selection Strategy Based on an Adaptive Parallel Genetic Algorithm
下载PDF
导出
摘要 网格是在某一单一时间,将网络中众多的计算机资源集中起来共同处理某个单一问题的.而如何有效地从众多的资源中选出多个较优秀的资源是一个NP问题.该文提出一种新的自适应的并行遗传算法(NAPGA),并对网格资源的选择策略在C+MPI平台上进行了并行模拟.结果表明,该算法不仅有效地避免了过早收敛的现象,而且取得了比改进型的并行遗传算法(NIPGA)更优的搜索结果.最后对遗传算法的搜索和收敛规律进行了一些讨论. With a large amount of computer resources becoming available in the network, grid can been used to handle a single problem simuhaneously. Selecting more than one outstanding resource from numerous resources is an NP problem. In this paper, a new adaptive parallel genetic algorithm (NAPGA) is proposed, with which parallel model simulation of the grid resources selection strategy on C + MPI platform is made. The result indicates that the algorithm can effectively solve the problem of premature convergence, and produce results that are better than a new improved parallel genetic algorithm (NIPGA). Searching and converging disciplinarian of genetic algorithm are discussed.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期629-633,共5页 Journal of Shanghai University:Natural Science Edition
基金 上海市发展基金资助项目(06AZ042)
关键词 网格 遗传算法 MPI grid genetic algorithm MPI
  • 引文网络
  • 相关文献

参考文献9

二级参考文献33

  • 1王长利,全厚德.基于数据库的通信设备自动测试系统设计[J].微计算机信息,2005,21(1):69-70. 被引量:37
  • 2金菊良,杨晓华,储开凤,郦建强.一般非线性预测模型参数优化的数值方法[J].预测,1997,16(1):49-50. 被引量:1
  • 3[1]Hosack H H,Mozumder P K, Pollack G P. Recent advances in process synthesis for semiconductor devices[J]. IEEE Electronic Design,1998; 45(3): 626-633.
  • 4[2]Moens P,Tack M,Van Hove H,et al. Development of an optimized 40V pDMOS device by use of a TCAD design of experiment methodology [A]. SISPAD [C].2000. 276-279.
  • 5[3]Holland J H. Adaptation in Natural and Artificial Systems [M]. University of Michigan Press,Ann Arbor.1975.
  • 6[4]Li Z,Xie X-F,Zhang W-J,et al. Realization of device decomposition for technology synthesis with the genetic algorithm [A]. Conf ICDA of the 16th IFIP WCC [C]. 2000. 355-359.
  • 7[5]Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems [J]. Evolutionary Computation, 1996 ; 4 (1): 1-32.
  • 8[6]Cantú-Paz E,Goldberg D E. Efficient parallel genetic algorithms: theory and practice [J]. Comput Methods Appl Mech Engineer,2000; 186: 221-238.
  • 9[7]Whitley D. The GENITOR algorithm and selective pressure: why rank-based allocation of reproductive trials is best [A]. Proc 3rd Iht Conf Genetic Algorithms [C]. Morgan Kauffman. 1989.
  • 10[8]Li Z,Xie X-F,Zhang W-J,et al. Realization of semionductor device synthesis with the parallel genetic algorithm [A]. Proc the ASP-DAC [C]. 2001.45-49.

共引文献224

同被引文献19

引证文献2

二级引证文献5

相关主题

;
使用帮助 返回顶部