摘要
Objective:To evaluate the effect and profitability of using the quantitative trait loci (QTL)-linked direct marker (DR marker) in gene-assisted selection (GAS). Methods: Three populations (100, 200, or 300 sows plus 10 boars within each group) with segregating QTL were simulated stochastically. Five economic traits were investigated, including number of born alive (NBA), average daily gain to 100 kg body weight (ADG), feed conversion ratio (FCR), back fat at 100 kg body weight (BF) and intramuscular fat (IMF). Selection was based on the estimated breeding value (EBV) of each trait. The starting frequencies of the QTL's favorable allele were 0.1, 0.3 and 0.5, respectively. The economic return was calculated by gene flow method. Results: The selection efficiency was higher than 100% when DR markers were used in GAS for 5 traits. The selection efficiency for NBA was the highest, and the lowest was for ADG whose QTL had the lowest variance. The mixed model applied DR markers and obtained higher extra genetic gain and extra economic returns. We also found that the lower the frequency of the favorable allele of the QTL, the higher the extra return obtained. Conclusion: GAS is an effective selection scheme to increase the genetic gain and the eco- nomic returns in pig breeding.
Objective: To evaluate the effect and profitability of using the quantitative trait loci (QTL)-linked direct marker (DR marker) in gene-assisted selection (GAS). Methods: Three populations (100, 200, or 300 sows plus 10 boars within each group) with segregating QTL were simulated stochastically. Five economic traits were investigated, including number of born alive (NBA), average daily gain to 100 kg body weight (ADG), feed conversion ratio (FCR), back fat at 100 kg body weight (BF) and intramuscular fat (IMF). Selection was based on the estimated breeding value (EBV) of each trait. The starting frequencies of the QTL's favorable allele were 0.1,0.3 and 0.5, respectively. The economic return was calculated by gene flow method. Results: The selection efficiency was higher than 100% when DR markers were used in GAS for 5 traits. The selection efficiency for NBA was the highest, and the lowest was for ADG whose QTL had the lowest variance. The mixed model applied DR markers and obtained higher extra genetic gain and extra economic returns. We also found that the lower the frequency of the favorable allele of the QTL, the higher the extra return obtained. Conclusion: GAS is an effective selection scheme to increase the genetic gain and the economic returns in pig breeding.
基金
Project (No. 30300249) supported by the Natural Science Foundationof Guangdong Province, China