期刊文献+

再制造机床可修复零部件精度分配研究 被引量:5

On Precision Distribution among Restorable Parts and Components of Remanufactured-Machine-Tools
下载PDF
导出
摘要 研究可修复零部件精度参数的分配是关系到再制造机床性能和再制造成本的重要问题。本文提出了用BP+GA的混合算法优化分配可修复零部件精度参数的方法。首先利用BP神经网络建立零部件精度参数与再制造机床空间几何误差之间的正向映射模型,然后用正交设计法得到训练样本数据并训练网络,最后再用BP+GA的混合算法逆向确定零部件的精度参数。仿真结果表明了混合算法是解决复杂精度分配问题的一种理想方法,优化结果可用于指导零部件精度的修复。 Precision distribution among restorable parts and components is an important problem for the performance of remanufactured machine tools and the cost of remanufacturing. A hybrid algorithm of back-propagation(BP) neural network and genetic algorithm (GA) for distributing the precision parameters among restorable parts and components is presented in this paper. Firstly, a BP neural network positive model was constructed to represent the relationship between the precision parameters of parts and the volumetric error of remanufaetured machine tools. Then, the training sample data was obtained with orthogonal design. Finally, the precision parameters of parts and components were determined conversely by the hybrid algorithm of BP and GA. Simulation results show that the hybrid algorithm is an effective approach to solving the complex problem of precision distribution, and the optimizing results can be used to guide the restoring of precision of parts and components.
出处 《机械科学与技术》 CSCD 北大核心 2007年第11期1466-1470,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 科技部中小型企业创新基金项目(05C26213400546) 江苏高校高新技术产业化发展项目(JHB05-19)资助
关键词 再制造机床 BP神经网络 遗传算法 精度分配 最优化 remanufactured machine tools BP neural network genetic algorithm precision distribution
  • 相关文献

参考文献10

  • 1Yang S H,Kim K H,Park Y K,et al.Error analysis and compensation for the volumetric errors of a vertical machining center using a hemispherical helix ball bar test[J].International Advanced Manufacturing Technology,2004,23:495 - 500
  • 2王小虎,张明廉,吴永刚,丁长明.红外成象自寻的制导导弹半实物仿真系统的精度最优分配[J].系统仿真学报,1999,11(5):375-379. 被引量:2
  • 3Huang X D,et al.Research on accuracy design for remanufactured machine tools[A].In:Robin Saxby.International Technology and Innovation[M],London:Institution of Engineering and Technology Press,2006:138
  • 4Cook D F,Ragadale C T,Major R L.Combing a neural network with a genetic algorithm for process parameter optimization[J].Engineering Applications of Artificial Intelligence,2000,13:391-396
  • 5Kyoung-Jae Kim,Han I.Application of a hybrid genetic algorithm and neural network approach in activity-based costing[J].Expert Systems with Applications,2003,24:73-77
  • 6Yang T,Lin H C,Chen M L.Metamodeling approach in solving the machine parameters optimization problem using neural network and genetic algorithms:a case study[J].Robotics and Computer-Integrated Manufacturing,2006,22:322-331
  • 7贺利乐,刘宏昭.基于遗传算法和神经网络的六自由度并联平台位置正解[J].机械科学与技术,2004,23(11):1348-1351. 被引量:7
  • 8马洪波,陈建军,张建国,胡太彬.随机杆系结构的随机优化设计[J].机械科学与技术,2005,24(1):26-29. 被引量:4
  • 9成大先.机械设计手册[M].北京:化学工业出版社,2002..
  • 10郭卉.改进遗传算法在牵引变压器优化设计中的应用[J].中国电机工程学报,2005,25(4):119-123. 被引量:22

二级参考文献22

共引文献936

同被引文献56

  • 1洪权,张振祺,杨冠军,罗国珍.Ti600合金的热机械加工工艺与组织性能[J].金属学报,2002,38(z1):135-137. 被引量:26
  • 2徐吉存,高柏宏,李焱,刘春时.基于新材料、新技术的绿色机床设计[J].航空制造技术,2011,54(4):49-51. 被引量:3
  • 3胡仲翔,张甲英,时小军,杨军伟,林允森.机床数控化再制造技术研究[J].新技术新工艺,2004(8):17-19. 被引量:11
  • 4马世宁,孙晓峰,朱胜,胡仲翔.机床数控化再制造[J].中国表面工程,2004,17(4):6-9. 被引量:6
  • 5Sreejith P S, Ngoi B K A. Dry Machining:Machining of the Future[J]. Journal of Materials Processing Technology, 2000,101 ( 1 ) : 287-291.
  • 6Wakabayashi T, Inasaki I, Suda S, et al. Tribological Characteristics and Cutting Performance of Iubricant Esters for Semi--dry Machining[J]. CIRP Annals- Manufacturing Technology, 2003, 52 (1): 61- 64.
  • 7Weinert K,Inasaki I,Sutherland J W,et al. Dry Machining and Minimum Quantity Iubrication[J].CIRP Annals-Manufacturing Technology, 2004,53 (2);511-537.
  • 8Khettabi R, Songmene V, Masounave J. Effect of Tool Lead Angle and Chip Formation Mode on Dust Emission in Dry Cutting [J]. Journal of Materials Processing Technology,2007,194(1/3) : 100-109.
  • 9Ni W Y. Orbital Drilling of Aerospace Materials [C]//AE Manufacturing and Automated Fastening Conference and Exhibition. Los Angeles, USA: 2007:3814-3822.
  • 10Brinksmeier E,Fangmann S, Meyer I. Orbital Drill- ing Kinematics E J-]. Production Engineering Re- search and Development, 2008,2 : 277-283.

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部