期刊文献+

求解裂纹扩展参数的最简回归 被引量:1

The Simplest Regression to Calculate the Parameters of Crack Growth
下载PDF
导出
摘要 裂纹扩展的过程受到诸多因素的影响,并且裂纹扩展变量与其影响因素之间存在着相关关系,因而可以通过回归分析寻找它们之间的数学描述.文中探讨了裂纹扩展参数的最简回归,得到了求解裂纹扩展参数的最简回归公式.该解法为实现对裂纹扩展规律的定量认识提供了理论依据. The process of crack growth is affected by many factors. There is a correlativity between crack growth variability and its influential factors. The regression analysis can be used to find the mathematical description among them. The simplest regression to calculate the parameters of crack growth is discussed here,and a formula of simplest regression is obtained. This solution has provided a theoretical foundation for us to learn the rule of crack growth quantitatively.
出处 《甘肃科学学报》 2007年第4期129-131,共3页 Journal of Gansu Sciences
基金 甘肃省自然科学基金(3ZS061-A25-47)
关键词 疲劳裂纹 最简回归 扩展参数 fatigue crack the simplest regression growth parameter
  • 相关文献

参考文献8

  • 1Paris P C, Endogon F. Critical Snalysis of Crack Propagation Laws[J]. Trans. ASME J Basic Eng, 1963, 85:528-534.
  • 2Dowling N E, Begley J A. Fatigue Crack Growth During Gross Plasticity and the J-integral [J]. ASTM STP, 1976, 590:82- 103
  • 3Dover W D . Fatigue Crack Growth Under COD Cycling[J]. Engineering Fracture Mechanics. 1973, 5 : 11-21.
  • 4史生良,王赞芝,林德深.中碳钢缺口疲劳裂纹的萌生及扩展规律的研究[J].甘肃科学学报,1997,9(2):77-81. 被引量:3
  • 5Forman R G, Keamey V E, Engle R M. Numerical Analysis of Crack Propagation in Cyclic Loaded Structure[J]. Journal of Basic Engineering, Trans ASME (Series D), 1967,89: 459- 464.
  • 6Forman R G, Mettu S R. Behavior of Surface and Corner Cracks Subjected to Tensile and Bending Loads in Ti-6Al-4v Alloy [J]. Fracture Mechanics, Twenty second Symposium, 1992, A STM STP 1131, 1: 519-546.
  • 7马平.拉伸载荷下环形切口试件的应力集中系数[J].兰州理工大学学报,2004,30(4):49-52. 被引量:13
  • 8谢里阳,林晨,平安.疲劳过程中强度退化与平均应力修正[J].机械强度,1996,18(3):41-44. 被引量:7

二级参考文献8

  • 1谢里阳,航空学报,1993年,14卷,12期,639页
  • 2平安,博士学位论文,1992年
  • 3谢里阳,Chin J Mech Eng,1988年,1卷,1期,90页
  • 4Neuber H.Theory of notch stresses [M].Berlin:Kerbspannungslehre Springer,1957.
  • 5Peterson R E.Stress concentration design factor [M].John:Wiley & Sons Inc,1953.
  • 6Nisitani H,Noda N A.Stress concentration of a cylindrical bar with a V-shaped circumferential groove under torsion,tension or bending [J ].Engng Fracture Mech,1984,20 (5,6 ):743-766.
  • 7韦尔霍夫斯基AB 张德辉译.复杂形状零件危险截面的应力确定[M].北京:中国工业出版社,1962..
  • 8李有堂,马平,杨萍,靳伍银.计算切口应力集中系数的无限相似单元法[J].机械工程学报,2000,36(12):101-104. 被引量:7

共引文献20

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部