摘要
A novel bioactive and bioresorbable asymmetry film was prepared. The PDLLA membrane was activated by 1, 6-hexanediamine to obtain a stable positive charge surface. Chondroitin sulfate and chitosan were then deposited on activated PDLLA membrane via layer-by-layer (LBL) electro-static assembly (ESA) technique. The deposition process was monitored by UV-Vis absorbance spectroscopy. The composite membrane was frozen lyophilized to form the asymmetry film and characterized by attenuated total reflectic (ATR)-FT-IR, XPS and SEM. The experimental results show that a stable 1, 6-hexanediamine layer on PDLLA substrate based on the aminolysis of the polyester and the layer thickness increase linearly first with the increase of the deposited layers, and then increases slowly due to the layer interpenetration. The test results of ATR-FT- IR and SEM show the asymmetry film is modified uniformly with a dense inner layer and a porous sponge outer tayer.
A novel bioactive and bioresorbable asymmetry film was prepared. The PDLLA membrane was activated by 1, 6-hexanediamine to obtain a stable positive charge surface. Chondroitin sulfate and chitosan were then deposited on activated PDLLA membrane via layer-by-layer (LBL) electro-static assembly (ESA) technique. The deposition process was monitored by UV-Vis absorbance spectroscopy. The composite membrane was frozen lyophilized to form the asymmetry film and characterized by attenuated total reflectic (ATR)-FT-IR, XPS and SEM. The experimental results show that a stable 1, 6-hexanediamine layer on PDLLA substrate based on the aminolysis of the polyester and the layer thickness increase linearly first with the increase of the deposited layers, and then increases slowly due to the layer interpenetration. The test results of ATR-FT- IR and SEM show the asymmetry film is modified uniformly with a dense inner layer and a porous sponge outer tayer.
基金
the State Basic Research Foundation of China(No.2005CB623905)