期刊文献+

最优预处理方法的多小波PWM阀控制信号消噪

Denoising control signals for pulse width modulation valves based on the optimal pre-processing method of multi-wavelet
下载PDF
导出
摘要 桑塔纳2000型轿车自动变速器有两个结构一样的PWM(Pulse Width Modulation)调节电磁阀。其理想的控制信号是标准的矩形波,但实际中的信号都受到不同程度的干扰。该文利用不同预处理方法的几个常用多小波对PWM电磁阀控制信号进行消噪处理。仿真计算结果表明:选择合适的预处理方法,利用多小波对信号消噪可以取得比传统小波更好的消噪效果。仿真结果验证了最优预处理方法的多小波PWM电磁阀控制信号消澡的可行性和有效性,从而为进一步提高电子控制单元ECU(electronic control unit)仿真测试台的性能提供有力依据。 The Santana 2000 automatic transmission has two PWM electro-magnetic valves in the same construction. Its ideal control signal is rectangular wave. But the actual control signal is disturbed. The control signal for the PWM valve is denoised by using different multi-waves with different pre-pro-cessing methods. Simulation results indicate that if a proper preprocessing method is chosen, the de-noi- sing performance with multi-wavelet is better than with the conventional wavelet. The said method is proved to be feasible and effective to denoise the control signal for the PWM valve, which provides support for improving the performance of the ECU simulation test platform.
出处 《工业仪表与自动化装置》 2007年第6期14-17,共4页 Industrial Instrumentation & Automation
基金 国家自然科学基金资助项目(60674076) 上海市教委优青后备基金资助项目(Z2006-78)
关键词 多小波 预处理方法 信号消噪 PWM阀 multi-wavelet pre-processing method signal denoising PWM valve
  • 相关文献

参考文献4

  • 1Daubechies I. Ten Lectures on Wavelets, CBMS -Conference Lecture Notes[ M]. SIAM Philadelphia, 1992.
  • 2Xia X G, Geronimo J S, Hardin Douglas P. Design of Prefilters for Discrete Multiwavelet Transform [J]. Trans. On signal Processing, 1996,44( 1 ) :25 -34.
  • 3刘志刚,何正友,钱清泉.多小波的研究进展及其在电力系统中应用的展望[J].电力系统自动化,2004,28(11):90-96. 被引量:10
  • 4Strela V, Heller P N, Topiwala P. The Application o Multi- wavelet Filter Banks to Image Processing [J]. IEEE Trans. on Image Processing, 1999,8 ( 4 ):548 - 563.

二级参考文献43

  • 1[19]Strela V. Multiwavelets: Theory and Application: [Doctoral Thesis]. Cambridge ( MA ): Massachusetts Institute of Technology, 1996
  • 2[20]Strela V. A Note on Construction of Biorthogonal Multi-scaling Functions. In: Wavelets, Multiwavelets, and Their Applications in Contemporary Mathematics. Philadelphia:American Mathematics Society, 1998
  • 3[21]Cotronei M, Montefusco L B, Puccio L. Multiwavelet Analysis and Signal Processing. IEEE Trans on Circuits and Systems- Ⅱ:Analog and Digital Signal Processing, 1998, 45(8): 970~987
  • 4[22]Jiang Q T. Orthogonal Multiwavelet with Optimum Timefrequency Resolution. IEEE Trans on Signal Processing, 1998,46(4): 830~844
  • 5[23]Jiang Q T. On the Design of Multifilter Banks and Orthogonal Multiwavelet Bases. IEEE Trans on Signal Processing, 1998,46 (12): 3292~3303
  • 6[24]Heil C, Strang G, Strela V. Matrix Refinement Equations:Existence and Uniqueness. J Fourier Anal Appl, 1996, 2:363~377
  • 7[1]Daubechies I. Ten Lectures on Wavelets. In: CBMS-conference Lecture Notes, Vol 61. Philadelphia: SIAM, 1992
  • 8[10]Alpert B K, Rokhin V. A Fast Algorithm for the Evaluation of Legendre Expansion. SIAM Journal of Science Statistics Computation, 1991, 12: 158~179
  • 9[11]Goodman T N T, Lee S L, Tang W S. Wavelets in Wandering Subspaces. Trans American Mathematics Society, 1993, 338:639~654
  • 10[12]Goodman T N T, Lee S L. Wavelets of Multiplicity r. Trans Amer Math Soc, 1994, 342:307~324

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部