期刊文献+

基于网络挖掘的实体关系元组自动获取 被引量:7

Automated Entity Relation Tuple Extraction Using Web Mining
下载PDF
导出
摘要 二元实体关系元组可以应用到知识库构建,数据挖掘,模式抽取等多个领域.本文利用特定关系的一个元组和一个关键词作为种子,结合多种自然语言处理底层技术,采取改进的模式获取方法和自举迭代策略,提出了一种新的从Web上抽取实体关系元组的方法.基准方法的平均准确率达到了78.12%,采用过滤措施后抽取方法的平均准确率达到了98.42%.实验结果表明,利用网络挖掘方法获取的实体关系元组能够很好满足信息抽取的应用,对抽取出的元组进一步处理,能够获取更多有价值的信息. Binary entity relationship tuples can be applied in many fields such as knowledge base construction,data mining and pattern extraction and so on.A seed with a tuple and a keyword of a special relation is used to implement the method of extracting entity relation tuples from the web.Multiple Natural Language Processing(NLP)technologies are combined in this method.A novel pattern acquisition method and an improved bootstrapping iteration strategy are adopted to extract tuples.The baseline method achieves to 78.12% of average precision.The method with filtering measure achieves to 98.42%.The experimental results show that it can satisfy information extraction application well and the extracted tuples can derive more valuable information through further processing.
出处 《电子学报》 EI CAS CSCD 北大核心 2007年第11期2111-2116,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60503072 No.60575042)
关键词 自举方法 实体关系 元组 信息抽取 网络挖掘 bootstrapping entity relation tuples information extraction web mining
  • 相关文献

参考文献14

  • 1R Feldman, B Rosenfeld. Boosting unsupervised relation extraction by using NER [ A ]. Conference on Empirical Methods in Natural Language Processing [ C ]. Australia: BPA Digital, 2006.473-481.
  • 2S Sekine. On-demand information extraction [ A ]. COLING/ ACL 2006 Main Conference Poster Sessions[ C ]. Australia: BPA Digital,2006.731-738.
  • 3B Rosenfeld, R Feldman. URES: an unsupervised web relation extraction system[ A ]. COLING/ACL 2006 Main Conference Poster Sessions[ C]. Australia: BPA Digital,2006.667-674.
  • 4M Zhang,J Su,et al.Discovering relations between named entities from a large raw corpus using tree similarity-based clustering[ A ]. The 2nd International Joint Conference on Natural Language Processing[ C ]. Berlin Heidelberg: Springer-Verlag, 2005.378-389.
  • 5T Hasegawa, S Sekine, R CJrishman. Discovering relations among named entities from large corpora [ A ]. Meeting of the Association for Computational Linguistics [ C ]. New York: ACM Press,2004.415-422.
  • 6车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 7C Aone,M Ramos-Santacruz. Rees: A large-scale relation and event extraction system[A]. Applied Natural Language Processing Conference[ C]. San Francisco:Morgan Kaufmann, 2000.76-83.
  • 8S Brin. Extracting patterns and relations from the world wide web[A]. WebDB Workshop at the 6th International Conference on Extending Database Technology[ C ]. London: Springer-Verlag, 1998. 172-183.
  • 9D Ravichandran and E Hovy.Leaming surface text patterns for a question answering system [ A ]. The 40th Association for Computational Linguistics [ C ]. Morristown: Association for Computational Linguistics,2002.41-47.
  • 10R Jones, A McCallum, et al. Bootstrapping for text learning tasks[ A]. IJCAI-99 Workshop on Text Mining:Foundations, Techniques and Applications [ C ]. San Fransisco: Morgan Kaufmann, 1999.52-63.

二级参考文献13

  • 1In: Proceedings of the 6th Message Understanding Conference (MUC - 7) [ C ]. National Institute of Standars and Technology, 1998.
  • 2C. Aone and M. Ramos-Santacruz. Rees: A large-scale relation and event extraction system[A]. In: Proceedings of the 6th Applied Natural Language Processing Conference[C] ,pages 76- 83, 2000.
  • 3S. Miller, M. Crystal, H. Fox, L. Ramshaw, R. Schwartz, R. Stone, R. Weischedel, and the Annotation Group.Algorithms that learn to extract information-BBN: Description of the SIFT system as used for MUC[ A]. In: Proceedings of the Seventh Message Understanding Conference (MUC-7)[C], 1998.
  • 4S. Soderland. Learning information extraction rules for semi-structured and free text[J]. Machine Learning, 1999. 34(1 - 3) :233 - 272.
  • 5N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines[ M]. Cambridge University Press,Cambirdge University, 2000.
  • 6T. Zhang. Regularized winnow methods[A]. In: Advances in Neural Information Processing Systems 13[C], pages703 - 709, 2001.
  • 7D. Haussler. Convolution kernels on discrete structures[R]. Technical Report UCSC-CRL- 99- 10, 7, 1999.
  • 8H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using string kernels[R]. J. Mach. Learn. Res., 2:419-444, 2002.
  • 9D. Zelenko, C. Aone, andA. Richardella. Kernel methods for relation extraction[R]. J. Mach. Learn. Res., 3:1083- 1106, 2003.
  • 10A. Culotta and J. Sorensen. Dependency tree kernels for relation extraction [ A]. In: Proceedings of ACL[ C ].2004. Barcelona, Spain.

共引文献115

同被引文献131

引证文献7

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部