摘要
对任意正整数n,著名的Smarandache函数S(n)定义为最小的正整数m使得n|m!,或者S(n)=min{m∶n|m!,m∈N}.而函数Z(n)定义为最小的正整数k使得n≤k(k+1)/2,即就是Z(n)=min{k∶n≤k(k+1)/2}.本文的主要目的是利用初等及解析方法研究复合函数S(Z(n))的均值,并给出一个较强的渐近公式.
For any positive integer n, the famous Smarandache function S (n) is defined as the smallest positive integer m such that n|m!, or S(n)=min{m:n|m!,m∈N}. And the function Z(n) is defined as the smallest positive integer k such that n≤k(k+1)/2. That is , Z(n)=min{k:n≤k(k+1)/2}. The main purpose of this paper is using the elementary methods and the analytic methods to study the mean value properties of the compostie function S(Z(n)) ,and give a sharper asymptotic formula for it.
出处
《纯粹数学与应用数学》
CSCD
北大核心
2007年第4期463-466,共4页
Pure and Applied Mathematics
基金
国家自然科学基金资助项目(10671155)