期刊文献+

一个包含Smarandache函数的复合函数 被引量:7

A composite function involving the Smarandache function
下载PDF
导出
摘要 对任意正整数n,著名的Smarandache函数S(n)定义为最小的正整数m使得n|m!,或者S(n)=min{m∶n|m!,m∈N}.而函数Z(n)定义为最小的正整数k使得n≤k(k+1)/2,即就是Z(n)=min{k∶n≤k(k+1)/2}.本文的主要目的是利用初等及解析方法研究复合函数S(Z(n))的均值,并给出一个较强的渐近公式. For any positive integer n, the famous Smarandache function S (n) is defined as the smallest positive integer m such that n|m!, or S(n)=min{m:n|m!,m∈N}. And the function Z(n) is defined as the smallest positive integer k such that n≤k(k+1)/2. That is , Z(n)=min{k:n≤k(k+1)/2}. The main purpose of this paper is using the elementary methods and the analytic methods to study the mean value properties of the compostie function S(Z(n)) ,and give a sharper asymptotic formula for it.
作者 吴启斌
出处 《纯粹数学与应用数学》 CSCD 北大核心 2007年第4期463-466,共4页 Pure and Applied Mathematics
基金 国家自然科学基金资助项目(10671155)
关键词 SMARANDACHE函数 复合函数 均值 渐近公式 Smarandache function ,composite function ,mean value ,asymptotic formula
  • 相关文献

参考文献9

  • 1Smarandache. Only Problems, Not Solutions[M]. Chicago:Xiquan Publishing House, 1993.
  • 2Jozsef Sandor. On certain inequalities involving the Smarandache function[J]. Scientia Magna, 2006,2 (3):78-80.
  • 3Jozsef Sandor. On additive analogues of certain arithmetical function [J]. Smarandache Notions Journal, 2004,14(1):128-132.
  • 4Farris Mark,Mitchell Patrick. Bounding the Smarandache function[J]. Smarandache Notions Journal, 2002,13(1):37-42.
  • 5Wang Yongxing. Research on Smarandache Problem in Number Theory [M]. Phoenix, USA: Hexis, 2005.
  • 6徐哲峰.Smarandache函数的值分布性质[J].数学学报(中文版),2006,49(5):1009-1012. 被引量:88
  • 7Liu Yaming. On the solutions of an equation involing the Smarandache function[J]. Scientia Magna, 2006,2(1 ) : 76-79.
  • 8Fu Jing. An equation involving the Smarandache function[J]. Scientia Magna, 2006,2(4) :83-86.
  • 9Tom M Apostol. Introduction to Analytic Number Theory[M]. New York:Springer-Verlag, 1976.

二级参考文献3

  • 1Erdos P, Problem 6674, Amer. Math. Monthly, Vol. 98, 1991, 965.
  • 2Tabirca S, About S-multiplicative functions, Octogon, 1999, 7: 169-170.
  • 3Apstol T. M, Introduction to analytic number theory, New York: Springer-Verlag, 1976, 77.

共引文献87

同被引文献26

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部