期刊文献+

一种新型的模型树算法研究及应用 被引量:2

On A New Model Tree Algorithm and Its Application
下载PDF
导出
摘要 决策树算法训练速度快、结果易于解释,但在实际应用中其分类精度难以满足业务要求。为了提高决策树算法的精度,基于LogitBoost算法的优点,对决策树C4.5算法进行了改进。在决策树的叶节点上应用LogitBoost算法建立叠加回归模型,得到一种新型的模型树算法-LCTree算法。通过11组UCI数据集试验,经分析比较,证明LCTree算法比其他算法更有效。将该算法应用于电信客户离网预警系统建模,结果表明,该算法可有效地分析客户特征,精确地预测离网客户。 Decision tree algorithm has high training speed and easy understandable result, but it has the disadvantages of limited precision resulting and is unable to satisfy the need of application in businesses. Basal on the advantages of LogitBoost algorithm, a new model tree algorithm called LCTree algorithms is proposed. LCTree algorithm is an improved algorithm building Logistic model on the leaves of C4. 5 tree. The experiments of the LCTree algorithms show better precision than others algorithms. The application in classification modeling of telecommunications data set got more effective results than C4. 5 does.
出处 《控制工程》 CSCD 2008年第1期103-106,共4页 Control Engineering of China
基金 北京市教育委员会重点学科共建基金资助项目(XK100080537)
关键词 LogitBoost 模型树算法 数据挖掘 客户关系管理 客户离网预警 Logitboost model tree algorithm data mining CRM customer loss warning
  • 相关文献

参考文献9

  • 1Dunham M. Data mining: introductory and advanced topics [M]. Upper Saddle River, NJ: Pearson Education, 2003.
  • 2Friedman N, Geiger D, Tibshirani R. Additive logistic regression: A statistical view of boosting [ J ]. Annals of Stastics, 2000,28 (2) : 337-374.
  • 3Witten I H, Frank E. Data mining practical machine learning tools and techniques( Second Edition ) [ M ]. Beijing: China Machine Press, 2006.
  • 4Landwehr N M, Frank E. Logistic model trees [A]. Proceedings of the Fourteenth European Conference on Machine Learning [ C]. Berlin: Spring- Verlag, 2003.
  • 5Quinlan J R. CA.5: programs for machine learning [M].SanMateo, CA: Morgan Kaufmann, 1993.
  • 6Han J, Kamber M. Data mining: concepts and techniques[M]. San Francisco: Morgan Kaufmann Publishers, 2001.
  • 7Peppard J. Customer relationship management (CRM)in financial services[J]. European Management Journal, 2000, 18(3) :312-327.
  • 8John Durkin,蔡竞峰,蔡自兴.决策树技术及其当前研究方向[J].控制工程,2005,12(1):15-18. 被引量:63
  • 9周宇,张森,蔡霞.面向E-CRM的数据挖掘技术应用[J].控制工程,2003,10(3):212-215. 被引量:6

二级参考文献34

  • 1张凤荔,葛晓峰,周明天.数据仓库研究及其在现代企业中的应用[J].计算机科学,1999,26(6):71-74. 被引量:11
  • 2Stone P,Veloso M.A layered approach to learning client behaviors in the RoboCup soccer server[J].Applied Artificial Intelligence(AAI),1998,12(2-3):165-187.
  • 3Ankerst M,Elsen C,Ester M,et al.Visual classification:an interactive approach to decision tree construction[C].San Diego:In Proceedings of International Conference on Knowledge Discovery and Data Mining,1999.
  • 4Fournier D,Cremilleux B.A quality index for decision tree pruning[J].Knowledge-based Systems,2002,15(1):37-43.
  • 5Sebban M,Nock R,Chauchat J H,et al.Impact of learning set quality and size on decision tree performances[J].IJCSS,2000,1(1):85-105.
  • 6Oates T,Jensen D.The effects of training set size on decision tree complexity[C].Nashville,Tennessee:Proc of the 14th International Conference on Machine Learning,1997.
  • 7Brodley C E,Friedl M A.Identifying and eliminating mislabeled training instances[C].USA:Proceedings of the Thirteenth National Conference on Artificial Intelligence,1996.
  • 8Elouedi Z,Mellouli K,Smets Ph.Decision trees using the belief function theory[C].Madrid,Spain:Proceedings of the Eighth International Conference IPMU,2000.
  • 9Yildiz O T,Alpaydin E.Omnivariate decision trees[J].IEEE Transactions on Neural Networks,2001,12(6):1539-1546.
  • 10Swere E,Mulvaney D J.Robot navigation using decision trees[R].Loughborougk,UK:Electronic Systems and Control Division Research,2003.

共引文献67

同被引文献26

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部