期刊文献+

Organic Light-Emitting Diodes by Doping Liq into an Electron Transport Layer 被引量:1

具有新型电子传输层的有机薄膜电致发光器件(英文)
下载PDF
导出
摘要 Organic light emitting diodes (OLEDs) incorporating an n-doping transport layer comprised of 8-hydroxy-quin- olinato lithium (Liq) doped into 4' 7- diphyenyl-1,10-phenanthroline (BPhen) as ETL and a p-doping transport layer that includes tetrafluro-tetracyano-quinodimethane (F4- TCNQ) doped into 4,4′, 4″-tris (3-methylphenylphenylamono) triphe- nylamine (m-MTDATA) are demonstrated. In order to examine the improvement in the conductivity of transport layers, hole-only and electron-only devices are fabricated. The current and power efficiency Of organic light-emitting diodes are improved significantly after introducing an n-doping (BPhen:33wt% Liq) layer as an electron transport layer (ETL) and a p-doping layer composed of m-MTDATA and F4- TCNQ as a hole transport layer (HTL). Compared with the control device (without doping) , the current efficiency and power efficiency of the most efficient device (device C) are enhanced by approximately 51% and 89% ,respectively, while driving voltage is reduced by 29%. This improvement is attributed to the improved conductivity of the transport layers that leads to efficient charge balance in the emission zone. 将8-hydroxy-quinolinato lithium(Liq)掺入4’7-diphyenyl-1,10-phenanthroline(BPhen)作为n型电子传输层(ETL),将tet-rafluro-tetracyano-quinodimethane(F4-TCNQ)掺入4,4′,4″-tris(3-methylphenylphenylamono)triphenylamine(m-MTDATA)作为p型空穴传输层(HTL),制作了p-i-n结构有机电致发光器件.为了检验传输层传导率的改善情况,制备了一系列单一空穴器件和单一电子器件.在引入BPhen:33wt%Liq作为ETL后,x%F4-TCNQ:m-MTDATA作为HTL后,器件的电流和功率效率明显改善.与控制器件(未掺杂)相比,性能最佳的掺杂器件的电流及功率效率分别提高了51%和89%,电压下降了29%.这是由于传输层传导能力的提高使得载流子在发光区域达到有效平衡.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第1期33-38,共6页 半导体学报(英文版)
基金 国家自然科学基金(批准号:90201034,60477014,60577041) 国家重点基础研究发展计划(批准号:2002CB613400)资助项目~~
关键词 P-I-N N-DOPING current efficiency electron transport CONDUCTIVITY p-i-n n型掺杂 电流效率 电子传输 传导率
  • 相关文献

参考文献27

  • 1Tang C W, Vanslyke S A. Organic electroluminescent diodes. Appl Phys Lett, 1987,51 (12) : 913.
  • 2Huang J, Pfeiffer M, Werner A, et al. Low-voltage organic electroluminescent devices using pin structures. Appl Phys Lett,2002, 80(1) : 139.
  • 3Kim J S, Granstrom M, Friend R H, et al. Indium-tin oxide treatments for single- and double-layer polymeric light-emitting diodes:the relation between the anode physical, chemical, and morphological properties and the device performance. J Appl Phys, 1998,84(12) :6859.
  • 4Mason M G, Hung L H, Tang C W, et al. Characterization of treated indium-tin-oxide surfaces used in electroluminescent devices. J Appl Phys, 1999,86(3) : 1688.
  • 5Van Slyke S A, Chen C H, Tang C W. Organic electroluminescent devices with improved stability. Appl Phys Lett, 1996, 69 (15) : 2160.
  • 6Yang Y, Heeger A H. Polyaniline as a transparent electrode for polymer light-emitting diodes:lower operating voltage and higherefficiency. Appl Phys Lett, 1994,64(10) : 1245.
  • 7Grandlund T, Pettersson L A A, Inganas O. Determination of the emission zone in a single-layer polymer light-emitting diode through optical measurements.J Appl Phys,2001,89(11) :5897.
  • 8Blochwitz J, Pfeiffer M, Fritz T, et al. Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Appl Phys Lett, 1998,73 (6) : 729.
  • 9Ganzoring C, Fujihira M. Improved drive voltages of organic electroluminescent devices with an efficient p-type aromatic diamirte hole-injection layer. Appl Phys Lett,2000,77(25):4211.
  • 10Romero D B, Schaer M, Zuppiroli L,et al. Effects of doping in polymer light-emitting diodes. Appl Phys Lett, 1995,67(12) : 1659.

同被引文献12

  • 1KEPLER R G, BEESON P M, JACOBS S J, et al. Electron and hole mobility in tris(8-hydroxyquinolinolato-N1, O8) aluminum[J]. Applied Physics Letter, 1995, 66(26): 3 618-3 620.
  • 2MICHAEL T, BLAKE B, BRUCE L D. Novel mobility platforms utilizing intelligent algorithms[J]. Proceedings of SPIE, 2004, 5422(451): 451-460.
  • 3BROWN A R, BRADLEY D D C, BURROUGHES J H, et al. Poly(p-phenylenevinylene) light-emitting diodes: enhanced electroluminescent efficiency through charge carrier confinement[J]. Applied Physics Letter. 1992. 61(23): 2 793-2 795.
  • 4HUNG L S, TANG C W, MASON M G. Enhanced electron injection in organic electroluminescence de- vices using an A1/LiF electrode[J]. Applied Physics Letter,1997, 70(2): 152-154.
  • 5KIDO J, LIZUMI Y. Fabrication of highly efficient organic electroluminescent devices[J]. Applied Physics Letter, 1998, 73(1<3): 2 721-2 723.
  • 6GANZORIG C, FUJIHARA M. Improved drive voltages of organic electroluminescent devices with an efficient p-type aromatic diamine hole-injection layer[J]. Applied Physics Letter, 2000, 77(25): 4211-4213.
  • 7PIROMREUN P, OH H, SHEN Y, et al. Role of CsF on electron injection into a conjugated polymer[J]. Applied Physics Letter, 2000, 77(15): 2 403-2 405.
  • 8ZHENG Xin-you, WU You-zhi, SUN Rong-ang, et al. Efficiency improvement of organic light-emitting diodes using 8-hydroxy-quinolinato lithium as an electron injection layer[J]. Thin Solid Films, 2005, 478(1/2): 252-255.
  • 9FONG H H, CHOY W C H, HUI K N, et al. Organic light-emitting diodes based on a cohost electron transporting composite[J]. Applied Physics Letter, 2006. 88(11): 113 510-113 512.
  • 10BLOCHWITZ J. PFEIFFER M, FRITZ T, et al. Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material[J]. Applied Physics Letter, 1998, 73(6): 729-731.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部