期刊文献+

Jungck's Common Fixed Point Theorem and E.A Property 被引量:2

Jungck's Common Fixed Point Theorem and E.A Property
原文传递
导出
摘要 We prove that (E.A) property buys the required containment of range of one mapping into the range of other in common fixed point considerations up to a pair of mappings. While proving our results, we utilize the idea of implicit functions due to Popa, keeping in view their unifying power. We prove that (E.A) property buys the required containment of range of one mapping into the range of other in common fixed point considerations up to a pair of mappings. While proving our results, we utilize the idea of implicit functions due to Popa, keeping in view their unifying power.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第1期87-94,共8页 数学学报(英文版)
基金 U.G.C.,India under Project No.F.30-246/2004(SR)
关键词 E.A property weak compatible mappings coincidence points fixed points and implicit functions E.A property, weak compatible mappings, coincidence points, fixed points and implicit functions
  • 相关文献

参考文献1

二级参考文献16

  • 1A1-Thagafi, M. A.: Common fixed points and best approximation. J. Approx. Theory, 85, 318-323 (1996).
  • 2Shahzad, N.: Invariant approximations and R-subweakly commuting maps. J. Math. Anal. Appl., 257, 39-45 (2001).
  • 3Jungck, G.: Common fixed point theorems for compatible self maps of Hausdorff topological spaces. Fixed Point Theory and Appl., 3, 355-363 (2005).
  • 4Sastry, K. P. R., Murthy, I. S. R. K.: Common fixed points of two partially commuting tangential selfmaps on a metric space. J. Math. Anal. Appl., 250, 731-734 (2000).
  • 5Pant, R. P.: Common fixed points of Lipschitz type mapping pairs. J. Math. Anal. Appl., 240, 280-283 (1999).
  • 6Meinardus, G.: Invarianze bei linearen approximationen. Arch. Rational Mech. Anal., 14, 301-303 (1963).
  • 7Subrahmanyam, P. V.: An application of a fixed point theorem to best approximation. J. Approx. Theory, 20, 165-172 (1977).
  • 8Smoluk, A.: Invariant approximations. Mat. Stos., 17, 17-22 (1981).
  • 9Habiniak, L.: Fixed point theorems and invariant approximation. J. Approx. Theory, 56, 241-244 (1989).
  • 10Sahab, S. A., Khan, M. S., Sessa, S.: A result in best approximation theory. J. Approx. Theory, 55,349-351 (1988).

共引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部