摘要
In this paper, we focus on the robust adaptive synchronization between two coupled chaotic neural networks with all the parameters unknown and time-varying delay. In order to increase the robustness of the two coupled neural networks, the key idea is that a sliding-mode-type controller is employed. Moreover, without the estimate values of the network unknown parameters taken as an updating object, a new updating object is introduced in the constructing of controller. Using the proposed controller, without any requirements for the boundedness, monotonicity and differentiability of activation functions, and symmetry of connections, the two coupled chaotic neural networks can achieve global robust synchronization no matter what their initial states are. Finally, the numerical simulation validates the effectiveness and feasibility of the proposed technique.
In this paper, we focus on the robust adaptive synchronization between two coupled chaotic neural networks with all the parameters unknown and time-varying delay. In order to increase the robustness of the two coupled neural networks, the key idea is that a sliding-mode-type controller is employed. Moreover, without the estimate values of the network unknown parameters taken as an updating object, a new updating object is introduced in the constructing of controller. Using the proposed controller, without any requirements for the boundedness, monotonicity and differentiability of activation functions, and symmetry of connections, the two coupled chaotic neural networks can achieve global robust synchronization no matter what their initial states are. Finally, the numerical simulation validates the effectiveness and feasibility of the proposed technique.
基金
Project supported by the National Natural Science Foundation of China (Grant No 60674026)
the Key Project of Chinese Ministryof Education (Grant No 107058)
the Jiangsu Provincial Natural Science Foundation of China (Grant No BK2007016)
the Jiangsu Provincial Program for Postgraduate Scientific Innovative Research of Jiangnan University (Grant No CX07B 116z)