期刊文献+

Binding Energies of Screened Excitons in a Strained(111)-Oriented Zinc-Blende GaN/AlGaN Quantum Well Under Hydrostatic Pressure 被引量:6

流体静压力下应变闪锌矿(111)取向GaN/AlGaN量子阱中受屏蔽激子的结合能(英文)
下载PDF
导出
摘要 We investigate the binding energies of excitons in a strained (111)-oriented zinc-blende GaN/Al0.3 Ga0.7 N quantum well screened by the electron-hole (e-h) gas under hydrostatic pressure by combining a variational method and a selfconsistent procedure. A built-in electric field produced by the strain-induced piezoelectric polarization is considered in our calculations. The result indicates that the binding energies of excitons increase nearly linearly with pressure,even though the modification of strain with hydrostatic pressure is considered, and the influence of pressure is more apparent under higher e-h densities. It is also found that as the density of an e-h gas increases,the binding energies first increase slowly to a maximum and then decrease rapidly when the e-h density is larger than about 1 ×10^11 cm^-2. The excitonic binding energies increase obviously as the barrier thickness decreases due to the decrease of the built-in electric field. 结合变分法与自洽计算方法研究了流体静压力下应变闪锌矿(111)取向GaN/AlxGa1 -xN量子阱中受电子-空穴气体屏蔽的激子结合能.计算中,考虑了沿(111)取向生长多层结构时存在压电极化引起的内建电场.计算结果表明,考虑压力对双轴及单轴应变的调制以及禁带宽度、有效质量和介电常数等参数的压力效应时,激子结合能随压力的增大近似线性增加;且当电子-空穴气体密度大时,这一效应更加显著.当给定压力时,随着电子-空穴气面密度的增加,激子结合能先缓慢增加,但当密度达到大约1011cm-2时结合能开始迅速衰减.此外,当减小垒的厚度时,由于内建电场减弱,激子结合能显著增加.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第2期234-239,共6页 半导体学报(英文版)
基金 国家自然科学基金(批准号:60566002) 内蒙古自治区优秀学科带头人计划资助项目~~
关键词 EXCITON strained zinc-blende quantum well pressure screened effect 激子 应变闪锌矿量子阱 压力 屏蔽效应
  • 引文网络
  • 相关文献

参考文献28

  • 1Akita K,Kyono T, Yoshizumi Y,et al. Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates. J Appl Phys, 2007,101 : 033104.
  • 2Swietlik T, Franssen G, Czernecki R, et al. Mode dynamics of high power (InAI)GaN based laser diodes grown on bulk GaN substrate. J Appl Phys,2007,101 : 083109.
  • 3Khan M A, Shalatov M, Maruska H P, et al. III-nitride UV devices. Jpn J Appl Phys, 2005, Part 1,44: 7191.
  • 4Ouchani N, Nougaoui A, Velasco V R,et al. Elastic layered waves in (001) III-V nitride systems. Phys Rev B,2006,74 :035431.
  • 5Thompson M P,Auner G W, Zheleva T S,et al. Deposition factors and band gap of zinc-blende AIN. J Appl Phys,2000,89.3331.
  • 6Lemos V, Silveira E, Leite J R, et al. Evidence for phase-separated quantum dots in cubic InGaN layers from resonant Raman scattering. Phys Rev Lett, 2000,84 : 3666.
  • 7Wagner J M, Bechstedt F. Pressure dependence of the dielectric and lattice-dynamical properties of GaN and AIN. Phys Rev B, 2000,62,4526.
  • 8Gofii A R, Siegle H, Syassen K,et al. Effect of pressure on optical phonon modes and transverse effective charges in GaN and AIN. Phys Rev B,2001,64:035205.
  • 9Lepkowski S P,Teisseyre H,Suski T,et al. Piezoelectric field and its influence on the pressure behavior of the light emission from GaN/AIGaN strained quantum wells. Appl Phys Lett, 2001,79. 1483.
  • 10Ban S L, Liang X X. Pressure effect on the binding energies of donors in GaAs/AlxGa1- x As heterojunctions. J Lumines, 2001, 94/95:417.

同被引文献44

引证文献6

二级引证文献4

;
使用帮助 返回顶部