期刊文献+

上证180指数的GARCH族模型仿真研究--对上证300指数的间接实证建模分析 被引量:15

Emulation for the Shanghai 300 Stock Price Index Through the Shanghai 180 Stock Price Index by GARCH-Class Models
下载PDF
导出
摘要 本文旨在运用GARCH族模型对即将作为股指期货标的物——上证300指数进行间接实证建模研究。本文使用上证180指数研究上证300指数具有可行性。分析结果表明:上海股市股价波动确实存在显著的GARCH效应和冲击持久效应,并存在较弱的杠杆效应;收益率条件方差序列是平稳的,模型具有可预测性,GARCH-M(1,1)模型可以很好地拟合与预测上证180指数。该仿真模型可以较好地实现点对点的长期高精度预测,克服了传统预测模型只能进行短期预测的缺陷。这不仅对于投资者规避风险,开拓利润空间,而且对于我国资本市场的稳健发展,都具有重要的理论与实践指导意义。 This paper conducts the real modeling research on the Shanghai 300 stock price index indirectly which will be the stock subject matter in stock futures market in China utilized the GARCH - class models through the Shanghai 180 stock price index. The empirical results had indicated that stock price undulation in the Shanghai Stock market has the remarkable GARCH effect and the impact lasting effect truly, and discovers the existence weak release leverage effect; the returns ratio condition variance sequence is steady, the model has the predictability, GARCH - M ( 1,1 ) model may well in the fitting and the forecast the Shanghai 180 stock price index. This simulation model may realize the point- to -point long -term high accuracy to forecast well that, overcame the tradition forecast model only to be able to carry on the short - term forecast the flaw. Not only this dodges the risk regarding the investor, developing the profit space, moreover regarding our country capital market steady development, all has the important theory and the practice guiding sense.
作者 赵进文 王倩
出处 《财经问题研究》 CSSCI 北大核心 2008年第3期47-54,共8页 Research On Financial and Economic Issues
基金 国家自然科学基金项目(70473012) 教育部人文社会科学重点研究基地重大项目(05jjd910153) 辽宁省高等学校优秀人才支持计划(辽教发[2006]124号)
关键词 上证180指数 GARCH族模型 GARCH效应 杠杆效应 仿真 Shanghai 180 index GARCH - Class Models GARCH effect leverage effect emulation
  • 相关文献

参考文献31

  • 1Akgiray. V. Conditional Heteroskedasticity in Time Series of Stock Returns: Evidence and Forecasts [J]. Journal of Business, 1989,62( 1 ) :55 - 80.
  • 2Pagan. A. R and Schwert. G.W. Alternative Models for Conditional Stock Volatilities[ J]. Journal of Econometrics, 1990, (45) : 267 - 290.
  • 3Franses. P.H. and van Dijk. D. Forecasting Stock Market Volatility Using Non- Linear GARCH Models [J]. Journal of Forecasting, 1996, ( 15 ) :229 - 235.
  • 4Brailsford. T. J and Faff. R. W. An Evaluation of Volatility Forecasting Techniques[ J]. Journal of Banking and Finance, 1996,20:419 -438.
  • 5Dueker. M.J. Markov Switching in GARCH Processes and Mean - Reverting Stock Volatility [J]. Journal of Business , Economics and Statistics 1997, (15) :26 -34.
  • 6Chris Brooks. Predicting Stock Index Volatility: Can Market Volume Help? [J]. Journal of Forecasting, 1998,(17) :59 -80.
  • 7O. ap Gwilym, C. Brooks, A. Clare and S. Thomas. Tests of non - linearity using LIFFE futures transactions price data [J]. Manchester School 1999,67 (2) : 167 - 186.
  • 8Chris Brooks, olan T. Henry, Gita Persand. The Effect of Asymmetries on Optimal Hedge Ratios [ J ]. Journal of Business, 2002,75 ( 2 ) : 333 - 352.
  • 9Chris Brooks and Ian Garrett. Can We Explain the Dynamics of the UK FTSE 100 Stock and Stock Index Futures Markets? [J]. Applied Financial Economics,2002, (12) :25 - 31.
  • 10Chris Brooks and Gita Persand. The Effect of Asymmetries on Stock Index Return Value at Risk Estimates [ J]. Journal of Risk Finance ,2003,4(2) :29 -42.

二级参考文献58

共引文献319

同被引文献77

引证文献15

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部