摘要
为解决粒子群算法在求解组合优化问题中存在的早熟性收敛和收敛速度慢等问题,将粒子群算法与局部搜索优化算法结合,可抑制粒子群算法早熟收敛问题,提高粒子群算法的收敛速度。通过建立有效的局部搜索优化算法所需借助的参照优化边集,提高了局部搜索优化算法的求解质量和求解效率。新的混合粒子群算法高效收敛于中小规模旅行商问题的全局最优解,实验表明改进的混合粒子群算法是有效的。
For resolving the two problems, premature convergence and slow-footed convergence, when utilizing particle swarm optimization to solve combinatorial optimization problem, it is necessary tointegrate particle swarm optimization and local search optimization algorithms. This can enhance to restrain premature of particle swarm optimization, and accelerate the convergence rate of the algorithms. The solution quality and solution efficiency of local search algorithms can be improved through establishing reference optimization edge set used by local search algorithms. New hybrid particle swarm optimization utilizing the above-mentioned methods converges high efficaciously to global optimal solutions of middling and small scale TSE The results of numerous experiments indicate that the new algorithm is efficacious.
出处
《计算机工程》
CAS
CSCD
北大核心
2008年第6期185-187,共3页
Computer Engineering
基金
国家自然科学基金资助项目“广东中生代典型侵入岩隆升过程研究”(40473029)