期刊文献+

一种改进的求解TSP混合粒子群优化算法 被引量:11

Improved Hybrid Particle Swarm Optimization Algorithm for Solving TSP
下载PDF
导出
摘要 为解决粒子群算法在求解组合优化问题中存在的早熟性收敛和收敛速度慢等问题,将粒子群算法与局部搜索优化算法结合,可抑制粒子群算法早熟收敛问题,提高粒子群算法的收敛速度。通过建立有效的局部搜索优化算法所需借助的参照优化边集,提高了局部搜索优化算法的求解质量和求解效率。新的混合粒子群算法高效收敛于中小规模旅行商问题的全局最优解,实验表明改进的混合粒子群算法是有效的。 For resolving the two problems, premature convergence and slow-footed convergence, when utilizing particle swarm optimization to solve combinatorial optimization problem, it is necessary tointegrate particle swarm optimization and local search optimization algorithms. This can enhance to restrain premature of particle swarm optimization, and accelerate the convergence rate of the algorithms. The solution quality and solution efficiency of local search algorithms can be improved through establishing reference optimization edge set used by local search algorithms. New hybrid particle swarm optimization utilizing the above-mentioned methods converges high efficaciously to global optimal solutions of middling and small scale TSE The results of numerous experiments indicate that the new algorithm is efficacious.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第6期185-187,共3页 Computer Engineering
基金 国家自然科学基金资助项目“广东中生代典型侵入岩隆升过程研究”(40473029)
关键词 旅行商问题 粒子群优化 中小规模问题 链式Lin-Kemighan算法 traveling salesman problem particle swarm optimization middling and small scale problem chained Lin-Kernighan algorithm
  • 相关文献

参考文献15

  • 1Eberhart R C, KennedY J. A New Optimizer Using Particle Swarm Theory[C]//Proc. the 6th Intl. Symposium on Micro Machine and Human Science. Nagoya, Japan: [s. n.], 1995: 39-43.
  • 2Kenned Y J, Eberhart R. Particle Swarm Optimization[C]//Proc. of IEEE ICNN'95. Piscataway, USA: IEEE Press, 1995: 1942-1948.
  • 3Eberhart R C, SHI Y. Particle Swarm Optimization: Developments, Applications and Resources[C]//Proc. of Congress on Evolutionary Computation. Seoul, South Korea:[s. n.], 2001: 81-86.
  • 4Krink T, Vesterstrom J S, Riget J. Particle Swarm Optimization with Spatial Particle Extension[C]//Proc. of the 2002 Congress on Evolutionary Computation. Honolulu, HI, USA:[s. n.], 2002: 1474-1479.
  • 5AL-Kazemi B, Mohan C K. :Multi-phase Generalization of the Particle Swarm Optimization Algorithm[C]//Proc.of the 2002 Congress on Evolutionary Computation. Honolulu, HI, USA: [s. n.], 2002. 489-494.
  • 6Xie Xiaofeng, Zhang Wenjun, Yang Zhilian. Dissipative Particle Swarm Optimization[C]//Proc. of the Congress on Evolutionary Computation. Honolulu, USA:[s. n.], 2002: 456-461.
  • 7Lovbjerg M, Krink T. Extending Particle Swarm Optimizers with Self-organized Critically[C]//Proc. of the IEEE intl. Conf. on Evolutionary Computation. Honolulu, USA: [s. n.], 2002: 1588- 1593.
  • 8Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients[J]. IEEE Trans. on Evolutionary Computation, 2004, 8(3): 240-255.
  • 9Traveling Salesman Problems Library[EB/OL]. (2006-11-07). http://www.iwr.uni-heidelberg, de/ groups/comopt/software/TSPLIB95/.
  • 10David A, Robert B, Vasek C. Concorde Network Optimization Package [CP/OL]. (2006-11-07).http://www.tsp.gatech.edu/concorde/downloads/codes/src/ co031219.tgz.

二级参考文献1

共引文献23

同被引文献93

引证文献11

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部