期刊文献+

基于KQPSO聚类算法的网络异常检测 被引量:1

Network anomaly detection based on KQPSO clustering algorithm
下载PDF
导出
摘要 提出一种基于KQPSO聚类算法的网络异常检测模型.该模型利用K-Means聚类算法的结果重新初始化粒子群,聚类过程都是根据数据间的Euclidean(欧几里德)距离。再通过量子粒子群优化算法(QPSO)寻找聚类中心。最后进行仿真模拟,实验结果表明,该模型对网络异常检测是有效的。 Model of detecting network anomaly based on KQPSO(K-Means Quantum-behaved Particle Swarm Optimization) clustering algorithms is presented.The authors uses K-Means clustering to seed the initial swam.All the process of clustering is based on the Euclidean distance among data vector.Cluster-centroid is chosen by QPSO clustering algorithm.Finally,the experiment result shows that this model is effective for network anomaly detection.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第11期127-128,167,共3页 Computer Engineering and Applications
基金 国家部委预研项目
关键词 QPSO算法 网络异常检测 K—Means KQPSO QPSO ( Quantum-behaved Particle Swarm Optimization )algorithm network anomaly detection K-Means K-Means Quantum-behaved Particle Swarm Optimization(KQPSO)
  • 相关文献

参考文献8

  • 1Maxion R A,Feather F E.A case study of ethernet anomalies in a distributed computing environment[J].IEEE Transaction on Reliability, 1990,39(4) :433-443.
  • 2Ho L L,Cavuto D J,Papavassiliou S,et al.Adaptive and automated detection of service anomalies in transaction-oriented WAN'S:network analysis,algorithms,implementation,and deployment[J].IEEE Journal of Selected Areas in Communications,2000,18(5):744-757.
  • 3Thottan M,Ji C Y.Statistical detection of enterprise network problem[J].Journal of Network and Systems Man-Agement,1999,7(1): 27-45.
  • 4Li Y G,Chen K F,Liao X T,et al.A genetic clustering method for intrusion detection[J].Pattern Recognition, 2004,37(5 ) : 927-942.
  • 5MacQueen J.Some methods for classification and analysis of multivariate observations[C]//Proc 5th Berkeley Symp Mathematics Statist and Probability, 1967:281-297.
  • 6Sun J,Xu W B.A global search strategy of quantum behaved particle swarm optimization[C]//Proceedings of IEEE Conference on Cybernetics an Intelligent Systems, 2004 : 111-116.
  • 7Sun J,Feng B,Xu W B.Particle swarm optimization with particles having quantum behavior[C]//Proceedings of 2004 Congress on Evolutionary Computation, 2004: 325-331.
  • 8KDD99cupdataset [DB/OL]. (1999 -05 ).http://kdd.ics.uci.edu/databases/kddcup99/kdd-cup 1999.html.

同被引文献21

  • 1郭文忠,陈国龙,陈庆良.高维数据环境下网络异常检测的改进否定选择算法[J].计算机应用,2009,29(3):805-807. 被引量:3
  • 2王松,王卫红,张繁.一种新的移动ad-hoc网络异常入侵检测技术[J].浙江工业大学学报,2004,32(6):696-699. 被引量:3
  • 3朱智林,左天军,韩俊刚.移动计费系统中数据异常的预防与检测[J].计算机应用,2004,24(B12):262-263. 被引量:2
  • 4Kumpulainen P, H/it6nen K. Local anomaly detection for mobile network monitoring[J]. Information Sciences: An International Journal, 2008, 178(20): 3840- 3859.
  • 5胡坚波.中国移动通信发展现状和趋势[EB/OL].新浪科技,http://tech.sina.com.cn/t/2005-12-16/1220794311.shtml,2005-12-16.
  • 6中国移动通信集团上海有限公司.移动网络扩容六大举措[EB/OL].http://elub.pchome.net/topic_1_151654341.html,2007-09-09.
  • 7庞素琳,汪寿阳.移动核心网异常数据识别线性判别模型[c]//中国系统工程学会第16届学术年会论文集:经济全球化与系统工程,上海系统科学出版社(香港),2010:132-138.
  • 8赵宇.1987年我国首个TACS模拟蜂窝移动电话系统在广东建成并商用[EB/OL].通信世界网,http://www.cww.net.cn,2007-4-15.
  • 9路透社.全球移动运营商用户数排名:中国移动居首[EB/OL].http://wap.sohu.com/it/communication/?nid=382&rid=NL203663284.ND271126329&v=2.2010-3-26.
  • 10Denning C. An intrusion-detection model[C]//IEEE Computer Society Symposium on Research in Security and Privacy, 1986:118 -131.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部