摘要
根据含五阶非线性微扰修正项的非线性Schrdinger方程,采用变分法,导出了光纤中高斯脉冲各参数随传输距离演化的微分方程组,用龙格—库塔算法对该方程组进行了数值求解。数值结果表明:五阶非线性使高斯脉冲的脉宽压缩,可在一定程度上抵消初始啁啾对脉宽的展宽作用,五阶非线性还可减小高斯脉冲频率、相位的抖动,因而适度的五阶非线性(γ=0.001-0.3)有利于高斯脉冲的稳定传输。
Based on modified nonlinear Schrodinger equation including the effect of quintic nonlinearity ( MNLSE ) , by using the method of variational principle, deduces the evolution equations for the parameters of Gaussian - shaped pulse that transmits in fiber, calculates the evolution equations by using Range - kutta algorithm. The result indicates that quintic nonlinearity compresses the width and alleviates the shift of frequency and phase, so appropriate quintic nonlinearity (v = 0.001 - 0.3) is helpful to steady transmission of Ganssian - shaped pulse in fiber.
出处
《激光杂志》
CAS
CSCD
北大核心
2008年第2期55-56,共2页
Laser Journal
关键词
纤维与导波光学
脉宽压缩
变分法
高斯脉冲
龙格-库塔算法
fiber and waveguide optics
compression of width
variational principle
Gaussian- shaped pulse
Runge- kutta algorithm