期刊文献+

一种非凸包边界约束不规则三角网生成算法 被引量:13

An algorithm for irregular triangulated networks restricted by non-convex border
下载PDF
导出
摘要 数字高程模型(DEM)模拟的大多数地形区域是多种类型区域镶嵌而成的复合体,且子区域的边界一般为非凸多边形,即三角网受到边界的约束。而目前已有的各种Delaunay三角网构网算法生成的不规则三角网的边界都是区域内采样点集的凸包,不能表达复合区域和边界为非凸多边形的区域。本文作者对三角网扩张法作了扩展,使之能够在任意多边形所包围的区域内生成不规则三角网。扩展后的算法具有步骤简单、适合任意多边形边界内生成不规则三角网的优点,而且该算法可用于"分块"式生成数据量较大的三角网,同时保证各"分块"之间完整的邻接关系。 Most of the terrain regions modeled by digital elevation model (DEM) is compounded ones that include multiple categories of surface features, and not all of the borders of these regions are convex, so regions always restricted by their non-convex borders. Now, most extent algorithms for generating Delaunay triangulated networks can only generate borders that are convex hull of sampied points, but can not create borders of compound regions and the region whose border is not convex. The author modifies the triangle-expanding method and makes it be able to generate irregular triangulated networks from discrete sampled points that are restricted by their border of arbitrary polygon. This new method has the advantage of simple steps, arbitrary border polygon, generating by split and correct adjacent relations.
出处 《测绘科学》 CSCD 北大核心 2008年第3期79-81,共3页 Science of Surveying and Mapping
基金 国家自然科学基金项目(40572012)
关键词 不规则三角网 非凸包边界 三角网扩张法 数字高程模型 irregular triangulated networks non-convex border triangle-expanding method digital elevation models
  • 相关文献

参考文献16

  • 1Green PJ, Sibson R. Computing Dirichlet Tessellations in the Plane [J]. The Computer Journal, 1978, 21 (2) : 168-173.
  • 2吴立新,史文中.地理信息系统原理与算法[M].科学出版社,2001.
  • 3Lawson. Software for C' Surface Interpolation [ Z ]. In Mathematical Software ||| (J. R. Rice. Ed ), Academic Press, New York, 1977: 161-194.
  • 4M I Shamos, D Hoey. Closet-point Problem [ C ] //Proceedings of 16^th IEEE Symposium on Foundations of Computer Science, Berkeley, California, 1975: 151: 162.
  • 5Lee D T, Schachter B J. Two Algorithms for Constructing a Delaunay Triangulation [ J ]. International Jounal of Computer and Information Science, 1980 , 9 ( 3 )219-242.
  • 6Rex A Dwyer. A fast Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations [ J ]. Algorithmica. 1987, (2) : 137-151.
  • 7蒋红斐.基于分治算法构建Delaunay三角网的研究[J].计算机工程与应用,2003,39(16):81-82. 被引量:13
  • 8胡金星,潘懋,马照亭,吴焕萍.高效构建Delaunay三角网数字地形模型算法研究[J].北京大学学报(自然科学版),2003,39(5):736-741. 被引量:54
  • 9宋占峰,蒲浩,詹振炎.快速构建Delaunay三角网算法研究[J].铁道学报,2001,23(5):85-91. 被引量:28
  • 10徐青,常歌,杨力.基于自适应分块的TIN三角网建立算法[J].中国图象图形学报(A辑),2000,5(6):461-465. 被引量:57

二级参考文献54

  • 1Franco P Preparata,Michael Lan Shamos.Computational Geometry:an Introduction[M].New York :Spfinger-Verlag, 1985.
  • 2Lee D T,Schachter B J.Two Algorithms for Constructing a Delaunay Triangulation[J].International Journal of Computer and Information Science, 1980; 9 ( 3 ) : 219-242.
  • 3Chew L P.Constrained Delaunay Triangulation[J].Algorithmica, 1989; (4) :97-108.
  • 4Bowyer A.Computing Dirichlet tessellations[J].The Computer Journal, 1981 ;24(2) : 162-166.
  • 5M 1 Shamos,D Hoey.Closet-point Problem[C].In:Proceedings of 16th 1EEE Symposium on Fundations of Computer Science,Berkeley,California, 1975 : 151-162.
  • 6Guibas L J, Stolfi J. Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams.ACM Transactions on Graphics, 1985,4(2) :74- 123.
  • 7Dwyer R A. A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations. Algorithmica, 1987,2(2) : 137 - 151.
  • 8Katajainen J, Koppinen M. Constructing Delaunay Triangulations by Merging Buckets in Quadtree Order. Ann Soc Math Polon Set IV Fund Inform,1988,11(3) :275 - 288.
  • 9Shamos M I, Hoey D. Closest-Point Problems. Proceedings of the 16th IEEE Symposium on Foundations of Computer Science, 1975,151 - 162.
  • 10Lewis B A, Robinson J S. Triangulation of Planar Regions with Application. The Computer Journal, 1978,21 (4):324 -332.

共引文献202

同被引文献99

引证文献13

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部