期刊文献+

盲源分离在机械振动信号分析中的应用 被引量:9

Study on Blind Source Separation of Mechanical Vibration Signal
下载PDF
导出
摘要 设备状态信号的处理是状态监测及故障诊断的基础。在实际运行环境中,信号检测传感器采集的机械振动信号必然包含设备各个部件的信号以及周围环境的强烈干扰。传统的振动信号处理方法抗扰去噪效果并不理想。盲源分离技术由于自身独特的盲处理优势,可以有效去除外来干扰并分离出源信号,有助于提高诊断的准确性。针对直升机齿轮箱振动信号进行盲源分离仿真,分离出了轴承故障振动信号,并将分离信号的功率谱与原始信号的功率谱相比较,表明盲源分离技术是机械故障诊断领域的一个有效的信号处理方法。 Equipment condition signal processing is the foundation of condition monitoring and fault diagnosis. In the actual environment, the mechanical vibration signals which the sensors gathered inevitably contain interference from other parts and equipments. The effect of interference removal by the traditional vibration signal processing methods is not adequate. However, blind sources separation is a special tool for analyzing and processing signals blindly, it can remove noises in observation signals effectively and improve the accuracy of the diagnostic performence. The application of BSS to diagnosis of helicopter gearboxes is proposed. One simulation is done on an actual faulty bearing and the bearing vibration signal is separated by BSS methods. Power spectrum densities of separated signal and original signal are compared and the results show that the method of blind sources separation can be a promis ing tool for analyzing and processing signals in condition monitoring and fault diagnosis of machinery.
出处 《测控技术》 CSCD 2008年第5期78-80,共3页 Measurement & Control Technology
基金 国家自然科学基金资助项目(60672184)
关键词 盲源分离 独立分量分析 状态监测与故障诊断:机械振动 blind separation of sources independent component analysis condition monitoring and fault diagnosis mechanical vibration
  • 相关文献

参考文献7

  • 1Patanchon G,Delabrouille J and Cardoso J F. Source separation on astrophysical data sets from the WMAP satellite [ A ]. Proc. ICA 2004, Granada, Spain, 2004.
  • 2Ciehocki A, Shishkin S, Musha T, Leonowicz Z, Asada T and Kurachi T. EEG filtering based on blind source separation (BSS) for early detection of Alzheimer' s disease [ J ]. Clinical Neurophysiology, 2005, 116(3) :729 -737.
  • 3Delorme A,Sejnowski T J,Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis [ J ]. NeuroImage,2007,34 (4) : 1 443 - 1 449.
  • 4Hoyer P O and Hyvarinen A, Independent component analysis applied to feature extraction from colour and stereo images [ J ], Network: Computation in Neural Systems, 2000,11 ( 3 ) : 191 - 210
  • 5Hyvarinen A, Fast and robust fixed-point algorithms for independent component analysis[ J ]. IEEE Transactions on Neural Networks, 1999, 10(3) :626 -634.
  • 6张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 7陈仲生,杨拥民,沈国际.独立分量分析在直升机齿轮箱故障早期诊断中的应用[J].机械科学与技术,2004,23(4):481-483. 被引量:18

二级参考文献62

  • 1[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 2[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 3[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 4[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 5[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 6[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 7[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 8[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.
  • 9[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029.
  • 10[10]Cardoso J F,Souloumiac A.Blind beamfomrming for non-Gaussian signals[J].lEE Proc.-F,1993,140:362-370.

共引文献227

同被引文献56

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部