期刊文献+

A Coupled Transiently Chaotic Neural Network Approach for Identical Parallel Machine Scheduling 被引量:2

A Coupled Transiently Chaotic Neural Network Approach for Identical Parallel Machine Scheduling
下载PDF
导出
摘要 在相同机器上安排工作是经常在各种各样的生产系统遇到的一种状况。在这份报纸,一新联合了短暂地混乱的神经网络(CTCNN ) 被提出解决相同平行机器安排。这个问题的一个混合整数编程模型被介绍一个排列矩阵表达式转变成 CTCNN 计算体系结构。新计算精力功能被建议除所有限制以外表示目的。特别地,在精力功能在惩罚术语之中存在的折衷问题被使用变化时间的惩罚参数克服。最后,结果与 100 个随机的起始的条件在 3 个不同规模问题上测试了证明网络收敛并且能在合理时间解决这些问题。 Scheduling jobs on identical machines is a situation frequently encountered in various manufacturing systems. In this paper, a new coupled transiently chaotic neural network (CTCNN) is put forward to solve identical parallel machine scheduling. A mixed integer programming model of this problem is transformed into a CTCNN computation architecture by introducing a permutation matrix expression. A new computational energy function is proposed to express the objective besides all the constraints. In particular, the tradeoff problem existing among the penalty terms in the energy function is overcome by using time-varying penalty parameters. Finally, results tested on 3 different scale problems with 100 random initial conditions show that the network converges and can solve these problems in the reasonable time.
出处 《自动化学报》 EI CSCD 北大核心 2008年第6期697-701,共5页 Acta Automatica Sinica
基金 Supported by National Natural Science Foundation of China (60674075, 60774078)
关键词 机械设计 智能化系统 人工神经网络 混沌系统 Scheduling, identical parallel machines, coupled transiently chaotic neural network, time-varying penalty coefficients
  • 相关文献

参考文献7

  • 1Thatcher J W. Complexity of Computer Computations. New York: Plenum Press, 1972
  • 2Hopfield J J, Tank D W. Neural computation of decisions in optimization problems. Biological Cybernetics, 1985, 52(3): 141-152
  • 3Tank D W, Hopfield J J. Simple neural optimization networks: an A/D converter, signal decision circuit, and a linear programming circuit. IEEE Transactions on Circuits and Systems, 1986, 33(5): 533-541
  • 4Akyol D E, Bayhan G M. Minimizing makespan on identical parallel machines using neural networks. In: Proceedings of International Conference on Neural Information Processing. Heidelberg, Germany: Springer Berlin, 2006. 553-562
  • 5Chen L, Aihara K. Chaotic simulated annealing by a neural network model with transient chaos. Neural Networks, 1995, 8(6): 915-930
  • 6Watta P B, Hassoun M H. A coupled gradient network approach for static and temporal mixed-integer optimization. IEEE Transactions on Neural Networks, 1996, 7(3): 578-593
  • 7Wang J. A time-varying recurrent neural system for convex programming. In: Proceedings of International Joint Conference on Neural Networks. Seattle, USA: IEEE, 1991. 147-152

同被引文献15

  • 1顾奕华,张子才.散料场堆取料机防碰撞控制[J].冶金自动化,2010,34(1):6-9. 被引量:13
  • 2钱江涛.斗轮堆取料机主参数的选用[J].水利电力机械,2005,27(1):42-45. 被引量:8
  • 3Thangavel P, Gladis D. Hysteretic hopfield network with dynamic tunneling for crossbar switch and N-queens problem[ J]. Neurocomputing, 2007,70( 13 ) :2544-2551.
  • 4Gopalsamy K, Liu P Z. Dynamics of a hysteretic neuron model [J]. Nonlinear Analysis : Real World Applications, 2007,8 ( 1 ) : 375- 398.
  • 5Dang X J,Tan Y H. RBF neural networks hysteresis modelling for piezoceramic actuator using hybrid model [ J ]. Mechanical Systems and Signal Processing, 2007,21 ( 1 ) : 430-440.
  • 6Zhao X L, Tan Y H. Neural network based identification of Preisach-type hysteresis in piezoelectric actuator using hysteretic operator [J]. Sensors and Actuators A: Physical, 2006, 126 (2): 306- 311.
  • 7Li C T,Tan Y H. A neural networks model for hysteresis nonlinearity [J].Sensors and Actuators A : Physical, 2004, 112( 1 ) : 49-54.
  • 8Hopfield J J, Tank D W. Neural computation of decision in optimization problem [ J ]. Biological Cybernetics, 1985, 52 ( 3 ) : 141- 152.
  • 9Nasrabadi N M, Choo C Y. Hopfield network for stereovision correspondence[J]. IEEE Trans on Neural Network, 1992,3( 1 ) :5- 13.
  • 10董超俊,刘智勇.多层混沌神经网络及其在交通量预测中的应用[J].系统仿真学报,2007,19(19):4450-4453. 被引量:24

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部