摘要
A one-dimensional stationary nonisentropic hydrodynamic model for semiconductor devices with non-constant lattice temperature is studied. This model consists of the equations for the electron density, the electron current density and electron temperature, coupled with the Poisson equation of the electrostatic potential in a bounded interval supplemented with proper boundary conditions. The existence and uniqueness of a strong subsonic steady-state solution with positive particle density and positive temperature is established. The proof is based on the fixed-point arguments, the Stampacchia truncation methods, and the basic energy estimates.
A one-dimensional stationary nonisentropic hydrodynamic model for semiconductor devices with non-constant lattice temperature is studied. This model consists of the equations for the electron density, the electron current density and electron temperature, coupled with the Poisson equation of the electrostatic potential in a bounded interval supplemented with proper boundary conditions. The existence and uniqueness of a strong subsonic steady-state solution with positive particle density and positive temperature is established. The proof is based on the fixed-point arguments, the Stampacchia truncation methods, and the basic energy estimates.
基金
the Educational Department of Hubei province(Q200628002)
the National Science Foundation of China(10701057)