期刊文献+

一种低密度奇偶校验码的环数统计方法 被引量:2

A Method of Counting the Number of Cycles in LDPC Codes
下载PDF
导出
摘要 对于Tanner图中给定码长的序列,LDPC码的短环对码的性能有重要影响。本文在分析LDPC码在Tanner图中的环在校验矩阵中的形状的基础上,提出了一种统计LDPC码中不同环长的环数的方法。首先对校验矩阵中一定数目的行组合中的环数进行统计,然后将所有行组合中的环数相加即得到校验矩阵中的环数。该方法可根据LDPC码的短环分布情况对其性能进行评估。应用提出的方法分别对MacKay的随机码和Fossorier的准循环码进行了环数统计。BER性能显示,尽管随机码环数特性比准循环码要差,但它的误码率性能比准循环码要好。 For a given block length sequence of the underlying Tanner graph (TG) ,the short circles of low-density parity check (LDPC) codes can have considerable variation in performance. By analyzing the shapes of the cycles of TG in parity check matrix, this paper presents a method of counting the number of 4-cycles ,6-cycles, 8-cycles and 10-cycles. Taking out a certain number of rows for different cycles, counting the number of cycles contained in these rows, then add up all the number of cycles that contained in all possible combination of the rows in the matrix, and we can get the number of cycles in the matrix. This method can be used effectively to evaluate the performance of LDPC codes according to their short circles distributions. Applying this method, we counting the number of cycles in the random LDPC codes and the quasi-cyclic LDPC codes, the BER performance shows that the random LDPC codes outperform the quasi-cyclic LDPC codes although it' s girth performance is not as good as the quasi-cyclic LDPC codes.
作者 范俊 肖扬
出处 《信号处理》 CSCD 北大核心 2008年第4期635-639,共5页 Journal of Signal Processing
基金 国家自然科学基金:60572093
关键词 通信 低密度奇偶校验码 树图 检验算法 分支法 Communication low-density parity-check (LDPC) codes tree check algorithm branch method
  • 相关文献

参考文献13

  • 1Gallager. R. G. Low-Density Parity-Cheek Codes [ D ]. Cambridge, MA: MIT Press, 1963.
  • 2Berrou. C, Glavieux. A ,Thitimajshima. P. Near Shannon Limit Error-Correcting Coding and Decoding :Turbo Codes[ C ]. Proc. IEEE ICC 93, Geneva, Switzerland, 1993 : 1064-1070.
  • 3MacKay. D. J. C, Neal. R. M. Near Shannon limit performance of low-density parity-check codes [ J ]. Electronics letters, 1996,32( 18 ) : 1645-1646.
  • 4MacKay. D. J. C, Good error correcting codes based on very sparse matrices [ J] , IEEE Trans. Inform. Theory, 1999.45 (2) :399-43i.
  • 5Sipser. M, Spielman. D, Expander codes [ J ]. IEEE Transactions on Information Theory, 1996,42 (6) : 1710-1722.
  • 6N. Wiberg. Codes and Decoding on General Graphs [ D ]. Linkoping University, Linkoping, Sweden, 1996.
  • 7Fan. J,Xiao. Y. A Design of LDPC Codes with Large Girth Based on the Sub-matrix Shifting [ C ]. IEE/IET International Conference on Wireless, Mobile& Mul-timedia Network, Nov. 2006 ( ICWMMN' 2006 ) : 1121-1124.
  • 8Tanner. R. M, A recursive approach to low complexity codes [ J ], IEEE Trans. Inform. Theory, IT-27, 533-547,1981.
  • 9范俊,肖扬,李门浩.一种围数为八的低密度校验码校验矩阵设计[J].北京交通大学学报,2007,31(2):10-14. 被引量:2
  • 10Xiao. Y, Lee. M. H, Low complexity MIMO-LDPC CDMA systems over multipath channels [ J ]. IEICE Trans. COM- MUN. ,. E89-B,No. 5,1713-1717,2006.

二级参考文献12

  • 1Gallager R G.Low-Density Parity-Check Codes[D].Cambridge,MA:MIT Press,1963.
  • 2Tanner R M,Sridhara D,Sridharan A,et al.LDPC Block and Convolutional Codes Based on Circulant Matrices[J].IEEE Trans.Inform.Theory,2004,50:2966-2984.
  • 3Tanner R M.A Recursive Approach to Low Complexity Codes[J].IEEE Trans.Inform.Theory,IT-27,1981,27(5):533-547.
  • 4MacKay D J C.Good Error Correcting Codes Based on Very Sparse Matrices[J].IEEE Trans.Inform.Theory,1999,45(2):399-431.
  • 5Kou Y,Lin S,Fossorier M P C.Low-Density Parity-Check Codes Based on Finite Geometries[J].IEEE Trans.Inform.Theory,2001,47:2711-2736.
  • 6Lucas R,Fossorier M,Kou Y,et al.Iterative Decoding of one Step Majority Logic Decodable Codes Based on Belief Propagation[J].IEEE Trans.Commun.,2000,48(6):931-937.
  • 7Lu J,Moura J M F,Niesen U.Grouping-and-Shifting Designs for Structured LDPC Codes with Large Girth[C] //ISIT 2004,Chicago,USA; 2004.
  • 8Lu J,Moura J M F,Niesen U.A Class of Structured LDPC Codes with Large Girth[C]//Proc.of 2004 IEEE International Conference on Communications,2004,1:425-429.
  • 9Zhang H T,Moura J M F.The Design of Structured Regular LDPC Codes with Large Girth[C] // Proc.of 2003 IEEE Global Telecommunications Conference (GLOBECOM'03),2003,7:4022-4027.
  • 10Xiao Y,Lee M H.Low Complexity MIMO-LDPC CDMA Systems Over Multipath Channels[J].IEICE Trans.COMMUN.E89-B,2006,5:1713-1717.

共引文献1

同被引文献27

  • 1戴伏生.求解通信网节点间全部路由的逻辑代数化算法[J].数学的实践与认识,2006,36(2):186-192. 被引量:1
  • 2GALLAGER R G. Low-density parity-check codes [ J]. IRE Transactions on Information Theory, 1962, 8 ( 1 ) : 21 - 28.
  • 3MACKAY D J C, NEAL R M. Near Shannon limit perfonnance of low-density parity-check codes [ J ]. Electronics letters, 1996, 32(18) :1645 - 1646.
  • 4TANNER R M. A recursive approach to low complexity codes [J], IEEE Trans. Inform. Theory, 1981, IT- 27 (5) : 533 - 547.
  • 5LUCAS R, FOSSORIER M, KOU Y, et al. Iterative decoding of one step majority logic decodable codes based on belief propagation [ J ]. IEEE Trans. Commun. , 2000, 48(6) :931 -937.
  • 6SIPSER M, SPIELMANL D. Expander codes [ J ]. IEEE Transactions on Information Theory, 1996, 42 ( 6 ) : 1710 - 1722.
  • 7DAI Fusheng, LIN Maoliu, QIAO Xiaolin, et al. A new source route algorithm of communication network [ C ]// IET International Conference on Wireless Mobile and Multimedia Networks Proceedings ( ICWMMN 2006 ). Hangzhou : IET,2006 : 379 - 382.
  • 8DAI Fusheng, SONG Lizhong, ZHANG Xiuzhen, Algebraic algorithm for reliability index weighted capacity of communication network [ J ]. Journal of Harbin Institute of Technology, 2003, 10(3): 290-294.
  • 9Fossorier M P C. Quasi-cyclic low-density parity-check codes from circulant permutation matrices [ J ]. IEEE Trans. Inf. Theory ,2004,50 ( 8 ) : 1788 - 1793.
  • 10Vasic B, Pedagani K, Ivkovic M. High-rate girth-eight low- density parity-check codes on rectangular integer lattices [J]. IEEE Trans. on Commun. ,2004,52 (8):1248 1252.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部