期刊文献+

M/G/1工作休假和休假中止排队 被引量:8

M/G/1 Queuing System with Multiple Working Vacation and Vacation Interruption
下载PDF
导出
摘要 本文分析了一个泊松到达、一般服务的单服务台休假排队,休假策略是工作休假和休假中止.通过嵌入马氏链的方法给出了系统稳态条件,并通过补充变量的方法给出了系统稳态队长的概率母函数。 In this paper, we analyze a single-server vacation queue with a general arrival process. Two policies, working vacation and vacation interruption, are connected to model some practical problems. The necessary and sufficient condition for the system stability is obtained by embedded Markov chain. The general generating function of queue length for the system stability is obtained by supplemental variable method.
机构地区 江办大学理学院
出处 《运筹与管理》 CSCD 2008年第4期67-71,共5页 Operations Research and Management Science
基金 国家自然科学基金资助项目(G010302) 江苏大学科研启动基金(04JDG032)
关键词 M/G/1排队系统 工作休假和休假中止 嵌入马氏链 补充变量法 M/G/1 queue working vacation and vacation interruption embedded markov chain supplementaryvariable method
  • 相关文献

参考文献12

  • 1Yutaka Baba. Analysis of a Gl/M/lqueue with multiple working vacations [ J]. Operation Research Letters, 2005, (33) : 201-209.
  • 2De-An Wu Hideaki Takagi. M/G/I queue with multiple working vacations[J]. Performance Evaluation, 2006, (63) : 654-681.
  • 3Doshi B T. Queuing systems with vacations-a survey[ J]. Queuing Systems, !986, (1) : 29-66.
  • 4Doshi B T. Single server queues with vacations, in: h. takagi (Ed.) , stochastic analysis of computer and communication systems[ C]. North-Holland, Amsterdam, 1990. 217-264.
  • 5Richard L. Tweedie Sufficient conditions for periodicity and recurrence of markov chains on a general state space [ J ]. Stochastic Processes and their Applications, Volume 3, Issue 4, October, 1975. 385-403.
  • 6Neuts M F. Matrix-geometric solutions in stochastic models [ M ]. Johns Hopkins University Press, Baltimore, 1981.
  • 7Servi L D, Finn S G. MIM/1 queues with working vacations (MIM/1/WV)[J]. Performance Evaluation, 2002, (50): 4.1-52.
  • 8Harrison Pitel. The M/G/1 queue with negative customers[ J ]. A Appl Prob, 1996, (28) : 540 -566.
  • 9Sennot L I, Humblet P A, Tweedie R L. Mean drift and the non-periodicity of markov chains[ J]. Operation Research, 1983, (31) : 783-789.
  • 10Cooper R B. Introduction to queuing theory[ M] . New York,North-Holland, 1981.

同被引文献32

  • 1Jihong LI,Naishuo TIAN.THE M/M/1 QUEUE WITH WORKING VACATIONS AND VACATION INTERRUPTIONS[J].Journal of Systems Science and Systems Engineering,2007,16(1):121-127. 被引量:18
  • 2De-An Wu, Hideaki Takagi. M/G/lqueue with multiple working vacations[J]. Performance Evalution, 2006, (63) : 654-681.
  • 3Geni Gupur. Semigroup method for M/G/1 queueing system with exceptional service time for the first customer in each busy period[ J]. Indian journal of mathematics, 2002, 44 (2) : 125-146.
  • 4Geni Gupur, Xue-zhi Li, Guang-tian Zhu. Functional analysis methodin queueing theory[ M ]. Research Information Ltd. , Herdfortshire, 2001.
  • 5Kelly J L, Namioka I. Liner topolojical spaces[M]. New York, Springer-Verlag, 1976.
  • 6Fattorini H O. The cauchy problem[ M]. Massachusetts, Addition-Wesley, 1983.
  • 7Pazy A. Semigroups of linear operators and application to partial differential equation [ M ]. New York, Springer-Verlag, 2001.
  • 8Doshi B T. Single server queue with vacations[C] // Takagi H. Stochastic Analysis of the Computer and Communication Systems, Amsterdam: North-Holland Elsevier, 1990: 217-264.
  • 9Doshi B T. Single server queue with vacations-a survery[J]. Queueing System, 1986, 1(1): 29-66.
  • 10Servi L D, Finn S G. M/M/1 queue with working vacations(M/M/1/WV)[J]. Performance Evaluation, 2002, 50(1): 41-52.

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部